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problem in neoantigen prediction is obtaining false positives, leading to poor
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CHAPTER 1

INTRODUCTION

A tumour-specific, neoantigen-based cancer vaccine is a potentially powerful
treatment option, which utilises unique mutated peptides from tumour cells to boost
the immune response and selectively attack cancer cells. Thus, characterisation of the
specifically targeted peptides that can be selectively recognised by the immune
system is essential for the development of a personalised cancer vaccine. The
identification of neoantigens commonly uses data from next generation sequencing
technologies and computational prediction. However, a major problem in neoantigen
prediction is high risk obtaining false positives i.e. predicting peptides as vaccine
candidates, which do not initiate an immune response in vivo, leading to poor
outcomes in clinical research and practice. With continuous developments in
peptidome profiling techniques, recently published tools use the integration of
peptidome data and binding affinity data as training data. The benchmarking for 12 of
the most popular peptide MHC 1 binding predictors has recently been performed, they
have reported that NetMHCpan 4.0 and MHCflurry were determined to have the
highest accuracy in discrimination of binders and non-binders [1]. Several neoantigen
prediction pipelines leverage these tools to predict the binding affinity between
peptides and MHC, the prediction results are reported as a predicted binding affinity
(ICs0) in nanomolar (nM) unit and the percentile rank (% Rank) [2, 3]. To distinguish
binding peptides from non-binding peptides, most neoantigen studies use a hard
threshold e.g. using an ICso value < 500 nM as a universal threshold to classify that a

peptide is a binder. In fact, the NetMHCpan documentation recommends using the



percentile rank (calculated as the proportion of random peptides passing the given
threshold) rather than the predicted binding affinity, i.e. using < 2% rank as a
threshold. However, MHCflurry did not perform analysis to select the threshold for
the percentile rank. Moreover, neither tools suggests a method for converting the
percentile rank to a global statistic, such as false discovery rate (FDR) or a local
peptide-level statistic such as the posterior error probability (PEP) that a given peptide
is a binder. To apply the 500 nM to cut off the predicted results for any MHC
molecules might not appropriate for some types since the different MHC molecules
have different predicted binding affinity scores especially those with lack of data
training. Therefore, it is important to refine the method to accurately classify binding
and non-binding peptides because it is the first step of neoantigen selection that is
critical for further downstream steps of prioritisation and selecting candidate
neoantigens to synthesise peptides and make a vaccine for further research or clinical

usage.

In this thesis, the data distribution of MHC-peptide binding affinity coming from
NetMHCpan and MHCflurry was explored to find the most suitable statistical
distribution model. Then, a model, called MHCVision, was developed using the
integration of mathematical models including the beta distribution model and the
approach of Expectation Maximisation (EM) algorithm. The model can estimate a
probability for being false positive (FDR, PEP scores) for each predicted score from
MHC-peptide binding prediction tools including NetMHCpan 4.0 and MHCflurry.
The script of MHCVision was implemented using Python, as a command line
application. Nevertheless, the predicted binding affinity score is necessary for

neoantigen prediction, it might not be sufficient to confirm peptide’s immunogenicity.



In practice, it might not be possible to use all predicted binding peptides to produce
the vaccine in clinical stage. Hence, determining the immunogenicity of predicted
peptides is also essential for neoantigen prediction. Another prediction model for
classifying immunogenic and non-immunogenic peptides was developed using the
approach of the Random Forest algorithm. The classification model was trained from
a set of features including physicochemical properties of amino acids in immunogenic
and non-immunogenic peptides and a similarity between T cell epitopes and the host
proteome. The model can predict the probability for each peptide to be immunogenic.
In the final phase of this thesis, a pipeline for neoantigen prioritisation was
implemented by integrating MHCVision and Immunogenicity prediction model. The
pipeline returns a final probability from the multiplication of true MHC binding
probability (1-PEP) and immunogenic probability. The pipeline can provide
probability scores related to MHC binding and immunogenicity, which could help to
improve the selection criteria for ranking or selecting candidate peptides without a

high risk for false positives.



CHAPTER 2

OBJECTIVES

The main objective of this research was to develop models that help to improve the
criteria to select and prioritise candidate neoantigens based on the prediction of MHC-
peptide binding affinity and immunogenicity prediction. This research work was
specifically aimed to develop new software that can give an accurate probability for a

peptide to be a genuine neoantigen.

2.1 Global and local false discovery rate (FDR) estimation model for MHC-

peptide binding affinity prediction

The ability of MHC binding is widely used to determine neoantigen since MHC-
peptide presentation is a necessary step for T cell recognition. However, the existing
MHC-peptide binding prediction tools provide a predicted binding affinity or an
estimated score relying on distribution of pre-set of negative data. The uncertainty of
neoantigen prediction based on insufficient statistical values is discussed in Section
5.1. Therefore, the first goal of this research was to develop a model that can estimate
global and local false discovery rate for an individual predicted MHC-peptide binding

affinity score. This work is summarised in Section 5.2.

2.2 MHC class | immunogenicity classification model

Since a key to identify if a peptide is neoantigen it must be an immunogenic epitope.
Even MHC binding is a necessary step for T cell recognition, but it is not sufficient to
determine whether an MHC presented peptide is an immunogenic peptide. The

criteria for candidate neoantigen selection performed in Section 5.1 rely not only



MHC-peptide binding affinity, but also consider other biological factors such as gene
expression, mutational site, and orientation of side chain of mutated amino acid.
However, they do not have a statistical basis to determine immunogenicity. Thus, the
second goal of this research was to build a model to classify peptides to be epitopes or
non-epitopes using a framework of machine learning, this work is summarised in

Section 5.3.

2.3 The pipeline for ranking HLA class | neoantigens based on true MHC

binding affinity and immunogenicity prediction

To serve the main objective of this research, the final goal was developing a new
software that can produce accurate statistics for neoantigen selection and
prioritisation, built by integrating models developed in this thesis, and summarised in

Section 5.4.



CHAPTER 3

LITERATURE REVIEWS

3.1 T cells and Major histocompatibility complex (MHC) proteins

The basic context of the immune system is required for understanding the following
details in this chapter. Therefore, in this section the background of the adaptive
immune system involving T cells and MHC molecules is briefly described and

referred to in the following sections.

3.1.1 The diversity of T cell receptors

T Ilymphocytes or T cells are one of the important white blood cells that play a crucial
role in the adaptive immune response. They act as the primary effectors for cell-
mediated immunity to confer response specificity using surface protein receptors to
recognise foreign antigens [4]. There are two main classes of T cells, which are
cytotoxic T cells (CD8+ cells) and helper T cells (CD4+ cells). Effector cytotoxic T
cells directly kill cells that are infected with a virus or some other intracellular
pathogens. In contrast, effector helper T cells help to stimulate the response of other
cells which mainly are macrophages, B cells, and cytotoxic T cells [5]. A critical step
in T cell development is making a functional T cell receptor (TCR). A mature T cell
can have incredible diversity of TCRs that can react to a variety of random patterns,
allowing the immune system to recognise many different types of pathogens. Each T
cell bears about 30,000 antigen-receptor molecules on its surface, each receptor
consisting of two different polypeptides chains including a and g chains. TCRs are

able to bind such a wide variety of peptide-MHC complexes due to genetic



recombination of gene segments creating a and £ chains [6]. Both @ and S chains
have two regions including an amino-terminal variable (V) region and a constant (C)
region, linked by disulfide bound. The V regions are encoded by separated gene
segments, which are variable (V), diversity (D) and joining (J) gene segments. A
random recombination of V, D, J gene segments generates high diversity of a V-
region exon. The TCR a locus contains V and J gene segments while the TCR 8
consists of V, J and D segments. For the a chain, a V, gene segment rearranges to a /,,
segment to create a V-region exon. Transcription and splicing of VJ, exon to
C,0enerates the mRNA that is translated to yield the TCR a chain protein.
Rearrangement of three gene segments (V, Dg, and Jg) of the B chain generates a
functional VDJ, of V-region exon that is transcribed and spliced to join to Cg, the
resulting mRNA is translated to yield the TCR g chain protein [5]. Moreover, the
combination of TCR a and TCR B creates more diversity of TCR proteins, those

recombinant events result in an estimated 10% possible different TCRs [7].

3.1.2 Major histocompatibility complex (MHC)

MHC molecules are cell surface proteins, their main function is to bind peptide
fragments and present them for recognition by T cells. There are two major types of
MHC proteins, which are MHC class | and class Il according to types of T cells that
are specific to each class. Only immune cells such as monocytes, B lymphocytes,
antigen presenting cells (APCs) which are macrophages and dendritic cells (DCs), and
epithelial cells can express both type of MHC molecules, while generally somatic
cells can express only MHC class | molecules [8]. The human MHC is called the

human leucocyte antigens (HLA) that maps to the short arm of chromosome 6



consisting of three regions including class I, class Il, and class Ill. However, only
class I and class 1l regions encode HLA molecules and function in the regulation of
immune response [9]. For human MHC, the class I region consists of the classical
HLA-A, HLA-B, and HLA-C genes, and their encoded proteins present peptides that
can be recognised by cytotoxic CD8+ T cells. The class Il region contains DR, DP
and DQ gene families that can encode human MHC class Il molecules including
HLA-DRA, HLA-DRB1, HLA -DRB3, HLA-DRB4, HLA-DRB5, HLA-DQAI,
HLA-DQB1, HLA-DPA1 and HLA-DPB1. Peptides displayed by MHC class Il can
be recognised by CD4+ T cells [10]. The diversity of human MHC alleles is high due
to extensive polymorphism at most loci. The latest update of the international
ImMunoGeneTics information system (IMGT) database in August 2019 contains
24,093 HLA alleles including 16,943 alleles of HLA class I, and 6,650 alleles of HLA
class Il [11]. Many of the alleles are exceptionally rare, carried only by a few
individuals, but 1,122 alleles of HLA-A, -B, -C, -DRB, -DQA, -DQB, -DPA, and -
DPB loci are common and well-documented, 415 alleles of these alleles were
identified as “common” (having known frequencies) and 707 as “well-documented”

base on HLA genotyping observations and available HLA haplotype data [12].

The standardised nomenclature system is typically used to define HLA polymorphism
that refers to the multiple variations of allele loci. The notation system was initially
designed based on HLA typing methods to detect and define HLA polymorphism
such as serologic and cellular assays to DNA sequencing [13]. The current structure
of nomenclature is a combination of alphanumeric characters and an asterisk (*)
symbol that divides a name into two main components including the name of the

locus i.e. HLA-A, -B, -C, -DRB, -DQA, -DQB, -DPA, and -DPB and the DNA



sequence variant (Figure 3.1). Each HLA allele name has a unique number
corresponding to up to four sets of digits separated by a colon () symbol. All alleles
are named with at least four digits which cover the first two sets of digits. The first set
described the encode HLA allele family which corresponds to the antigen group e.g.
A*02, and the next set of digits after the first colon are used to define the DNA
sequence variant that change in the amino acid sequence of the encoded protein which
is usually assigned in a consecutive numerical order e.g. A*02:101 [14]. Longer
names containing Field 3 or Field 4 are assigned if necessary, but the variations do not

alternate at the protein level.

Separate gene name from HLA prefix

Field Separator
Separator T

|
HLALA*02:101:01:02N
T T T T T TT

HLA-prefix Gene  Field1 Field 2 Field 3 Field 4 Suffix

Field 1: Allele group

Field 2: Specific HLA protein

Field 3: Synonymous DNA substitution in coding region
Field 4: Changes in non-coding region

Suffix: Denoted changes in expression

Figure 3.1 Structure of the nomenclature for HLA allele with four fields (adapted

from http://hla.alleles.orq).
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3.1.3 MHC antigen processing and T cell recognition

MHC class | and class Il have a similar function for short peptide delivery and
presentation on cell surface. The difference between those two classes is the source of
peptides for a step of antigen processing. Proteins that are processed in the cytosol
such as intracellular proteins, tumour proteins, released proteins from viral infection
or proteins from transplantation, are fragmented in the cytoplasm and presented via
MHC | molecules. Cytosolic proteins are degraded by the proteasome into short
peptides, then, those peptides are delivered to the endoplasmic reticulum (ER) via ER
protein membrane, transporter associated with antigen processing (TAP) [15-17]. In
the ER, peptides with specific length of 8 to 11 amino acids are potentially bound to
the empty MHC | molecules. The complex of MHC I-peptide complete MHC protein
folding, and the complete MHC I-peptide complexes are released from the ER and
transported to the cell surface to present a peptide to CD8+ T cells [18] (Figure 3.2,
top panel). MHC class Il proteins can present longer peptides (11-30 amino acids)
than those presented by MHC class | molecules[19]. MHC class Il molecules
generally present peptides derived from the endocytic processing pathway, which are
extracellular proteins or intracellular proteins degraded via the endosomal pathway
[20]. The protein degradation is performed through the endosomal/lysosomal antigen-
processing compartment, when the complex of MHC Il molecules with the invariant
chain (lij) combine to that compartment, the mixture of proteases in the vesicle
degrade the invariant chain resulting in the complex of MHC Il and a fragment of [;,
called class Il-associated invariant chain peptide (CLIP) [21, 22]. The enzyme called
HLA-DM empties the MHC Il groove by removing CLIP leading to the binding of

MHC 1l and a peptide. The complex of the MHC Il-peptide is moved to the cell
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surface by vesicular transportation for CD4+ T cells presentation [23, 24] (Figure 3.2,
bottom panel). T cells recognise a peptide when bound to an MHC molecule. The
TCR interacts with a ligand by making contacts with both MHC molecule and peptide
by their TCRs, most predominantly via complementarity determining region 3

(CDR3) loops (Figure 3.3) [25].

Antigen Antigen MHC Peptide-MHC Peptide-MHC
uptake processing biosynthesis association presentation
Peptides in
cytosol 0l g TAP %Y ‘
- \\V I ,
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. e Class I% ~
Cytosolic MHC , : cD8+
protein Proteasome ‘ CTL
ER ICIass | MHC pathway.
N= -> {*\
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Figure 3.2 The antigen processing and MHC presentation pathways of MHC class |
(top) and class Il (bottom) [5].
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TCR constant |
domain

TCR Variable |
domain

Peptide

B2-microglobulin

Figure 3.3 The 3D-structure of binding interaction of T cell receptor and the complex
of HLA-A*02:01 presented peptide [26].

3.2 An introduction of Tumour immunology and cancer immunotherapy

Cancer immunotherapy has been developed during recent decades and has come to be
a powerful approach for several types of cancer and also promising for treatment of
the late stage or metastatic cancer. In contrast to the other therapeutic concepts,
immunotherapy exploits the immune systems to attack cancer cells based on
complementation or stimulation of the immune system specific for the individual [27].
As a result, this approach is a promising strategy to deal with the heterogeneity of
cancer. The principal of cancer immunotherapy is the concept of immune surveillance
of tumours, which is the ability of the immune system to specifically identify and
eliminate cancer cells that contain molecules or expressed antigens which never exist,

or show aberrant expression, in normal cells. As a consequence, the lack or inhibition
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of immune surveillance due to an immune evasion of tumour cells can develop the
cancer progression [28].Therefore, this therapeutic approach is intended to restore the

ability of the immune system to combat cancer.

3.2.1 Immune surveillance of cancer and cancer immunoediting

There are three primary roles of preventing tumours through the function of the
immune system. The first one is protecting the host from virus-induced cancer by
suppressing viral infection processes or destroying infectious cells. Second, the
balance of the immune system can regulate the immune response to avoid the
inflammatory environment itself causing tumourigenesis. The third is the immune
system can detect cancer cells on the basis of the presence of tumour specific antigens
or molecular biomarkers indicating aberrant cells and eliminating them before they
can be harmful. The last one is the role of immune surveillance. The concept of
immune surveillance has been stated since the late 1950s, where the evidence was
presented by transplant models that the host rejected tumour tissues, but normal tissue
transplantation can be accepted, suggesting that the tumour-specific antigens can
trigger a self-immune system [29]. The host immune system can respond to the
appearance of cancer cells by the process of antigen presentation as described in
Section 3.1.3. Once APCs process and present tumour-specific antigens to T cells,
mature T cells survey and seek out tumour cells who express those specific antigens
and eliminate them. Even in the presence of immune system functions, cancer cells
still develop and do harm - the concept of cancer immunoediting has been developed
since 2002 to explore the relationship between cancer development and the immune

system that can explain how tumour cells evade from immune surveillance [30].
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The concept of cancer immunoediting consists of three processes (Figure 3.4). First,
the elimination process takes in the concept of immune surveillance, growing of
aberrant or transformed cells induce the inflammatory environment to recruit innate
immune cells (NK cells, macrophages, and DCs) to the localisation site. The attack
from the innate immune system will produce cytokines such as Interferon gamma
(INF-y) and several chemokines, the secretion of INF-y and chemokines induce anti-
tumour proliferation, apoptotic, and anti-angiogenetic mechanisms resulting in
limiting cancer growth [31-33]. Then, debris from dead tumour cells are ingested by
local DCs, that will process tumour associated antigens and present to naive T cells in
the lymph node. The mature T cells are effector cells, they away from the lymph node
and go to the site of cancer cells and specifically recognise and eliminate cancer cells
who harbour antigens that are presented by DCs. Second, the equilibrium process
occurs based on natural selection, some cancer cells are eliminated, but those that
have high genetic instability can generate new variants and harbour mutations that can
cause escape from or resistance to the immune system. Third, in the escape process,
cancer cells containing a high load of genetic mutations that survive immune
surveillance (the elimination phase) can further develop cancer progression and cause
detriment to the host body. From the concept of cancer immune editing, the clinically
observable cancer disease indicates the failure of the natural immune system to
combat cancer cells. Therefore, to exploit the immune system for effective cancer
treatment, the natural immune response is needed to be re-established, which for the

basis for the concept of cancer immunotherapy.
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Figure 3.4 The three phases of cancer immunoediting. (1) Elimination; innate and
adaptive immune cells recognise and attack transformed cells to destroy them via
cytokines secretion. (2) Equilibrium; if the immune system cannot completely
eliminate transformed cells, tumour cells that have surviving tumour variants can
resist the attack from immune cells. (3) Escape; Tumour cells that survive from

immune surveillance can evade the immune system and develop the progression.

3.2.2 The approach of immunotherapy for cancer treatment

In the present, there are several types of immunotherapies for cancer treatment, those
can either help the immune system to attack cancer cells or stimulate the immune
response to be active and eliminate cancer cells. Currently, there are three major types
of cancer immunotherapies which are the most promising and currently developing,

which are checkpoint inhibitors, adoptive cell transfer, and cancer vaccines.
a.) Immune checkpoint therapy

Program cell death 1 (PD-1) or Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-
4) are co-stimulatory molecules expressed on the surface of T cells. They act to

amplify the initial activating signals from the interaction between TCRs and MHC
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presented antigens, the result from the signal amplification can activate T cell
responses. To evade immune surveillance, tumour cells express the proteins e.g.
program cell death 1 ligand (PD-L1) that can bind to those co-stimulatory molecules,
the binding interaction can transmit the signal to stop the killing function of T cells
[34]. To revive the activation of T cells, the approach of checkpoint inhibitors, which
are an antibody-based treatment, is designed to block the binding of co-stimulatory
molecules and their ligands expressed by tumour cells so that the killing function of T
cells is re-active to eliminate cancer cells (Figure 3.5). CTLA-4 inhibitors is the first
immune checkpoint inhibitor that has been approved by the US Food and Drug
Administration (FDA) in 2011 for treatment of melanoma [35]. The first PD-1/PD-L1
checkpoint inhibitors for oesophageal cancer was approved in 2014, and it has been

now used for the first-line treatment of advanced non-small cell lung cancer [36].
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Active T
cell

Anti-PD-L1

Figure 3.5 Anti-PD-1 and anti-PD-L1 therapies for re-activation of inactive T cells.
The T cell receptor can recognise antigen presented by tumour cells, but the
interaction of PD-1 and PD-L1 inhibits T cell activation (top panel). The monoclonal
antibodies that can specifically bind to PD-1 or PD-L1 can block the binding
interaction between PD-1 and PD-L1 so that an unbound PD-1 molecule can

reactivate T cell responses (bottom panel).
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b.) Adoptive cell transfer (ACT)

The approach of adoptive cell therapy basically utilises T cells which can directly
target the specific protein expressed on a patient’s cancer cells and kill them [37]. In
practice, T cells are taken from a cancer patient’s own blood or tumour tissue, and
those T cells that can specifically recognise expressed peptides on cancer cells’
surface are selected, or the protein receptors on T cell surface are engineered to make
T cells more effective to target cancer cells. Then, the modified T cells are expanded
in the laboratory to increase numbers and given back to the patient to attack cancer
cells (Figure 3.6). The chimeric antigen receptor T cell (CAR T cell) therapy is the
type of ACT which has been approved by FDA since 2017, and clinically used in
lymphoma. CAR T cells target an antigen called CD19 which is especially expressed

in patients with lymphoma [38].

T cells

) activation
T cells &
J& isolation N

Expansion

Figure 3.6 Adoptive T cells therapy. T lymphocytes are isolated from blood or
tumour tissue of a cancer patient. T cells have been activated by tumour associated
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antigens, T cell populations that have the desired T cell receptor specificity are
selected and expanded. The selected T cells are then re-infused to a cancer patient.

c.) Cancer vaccines

Vaccines for cancer treatment are not the same as vaccination for disease prevention.
Cancer treatment vaccine play a role with boosting the natural immune system to
exterminate cancer cells. Cancer cells are genetically unstable, resulting in them
harbouring numerous somatic mutations that are a source of molecules that normal
cells do not have, called tumour specific neoantigens [39]. With the adaptive immune
response, the effector T cells can be activated by recognition and interaction with
antigens presented by MHC proteins. Since neoantigens are mutated peptides that are
not self-antigens, those neoantigens are possibly be presented on cancer cell surface
by MHC molecules and recognised by T cells. T cells will see them as foreign
peptides resulting to activation of T cell responses and subsequently kill cancer cells
who express those neoantigens [40, 41]. From this context, synthetic neoantigens can
be given to the patient with cancer, the antigens will stimulate the immune system to
target and destroy cancer cells who express neoantigens [42]. Cancer vaccines
targeting neoantigens can be formulated via various types of vaccine such as nucleic
acids (DNA or RNA vaccines), dendritic cells loaded peptides (DC-based vaccine),

and synthetic peptide vaccine.

3.3 An introduction of neoantigens in cancer immunotherapy

As described in the previous section, neoantigens can boost the ability of endogenous
T cells of cancer patients resulting to restoring of the immune system for attacking
cancer cells. Several pre-clinical and clinical studies have revealed the potential of

neoantigen based cancer vaccines for the inhibition of tumour growth and tumour
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metastasis [43]. In this section, the generation of neoantigens from cancer cells and

neoantigen-based cancer vaccines are further described.

3.3.1 Arising of tumour specific neoantigens

Epitopes that can activate host immune system leading to cancer rejection are possibly
derived from two types of antigens, which are self-peptides that induce T cell
tolerance, and the other type is the peptides that have never been expressed in the
germline genome. The second type can be generated from either non-synonymous
DNA mutations that arose during cancer development that solely create novel protein
sequences that normal cells do not have, or viral peptides in virus-associated cancer
types such as human papillomavirus (HPV) caused cervical cancer and Epstein Barr
virus (EBV) associated cancer e.g. nasopharyngeal cancer. There are several studies
that have exhibited the potential of immunogenicity and the ability of cancer
suppression by neoantigens derived from non-synonymous somatic mutations
indicating that the pool of neoantigens from non-synonymous somatic mutations can
contribute to immunogenic peptides triggering T cell activation [44, 45]. According to
antigen processing described in Section 3.1.3, neoantigens derived from somatic
mutation have a chance to be presented by MHC molecules to present to T cells

resulting the activation T cell killing function.

3.3.2 Neoantigen-based cancer vaccines

Initially, the approach of neoantigen-based cancer vaccines was not much preferred as
a target for cancer immunotherapy because of the genetic diversity across different
patients, thus, it is difficult to develop this intervention as a “one size fits all”

approach. However, in recent years, a number pre-clinical and clinical studies have
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been reported showing potential of neoantigen-based cancer vaccine in tumour
destruction [46]. For developing the vaccination from antigens or deriving
neoantigens, there are various types of vaccine formations including cell-based cancer
vaccines, peptide-based cancer vaccines, and nucleic acids-based cancer vaccines
(Figure 3.7). There are generally two types of cell-based cancer vaccines, which are
autologous cancer cells and neoantigens loaded or transfected DCs. With the
application of a DCs-based vaccine, DCs of an individual patient are isolated and
loaded with synthetic peptides that are identified as neoantigens or transfected with
DNA or mRNA translated neoantigens. Those neoantigens are processed and
presented on DCs’ surface via MHC molecules as discussed above, then neoantigen-
loaded mature DCs are given to the patient [47]. However, cell-based vaccines have
costly manufacturing/production and are time consuming. A peptide-based cancer
vaccine is an intervention using synthetic peptides composed of about 25-30 amino
acids with the region of neoantigen. The synthetic peptides can be mixed with
adjuvants that improve the ability of APCs to uptake them, and provide better immune
response - most clinical studies have utilised granulocyte macrophage colony-
stimulating factor (GM-CSF) and polyinosine-polycytidylic acid (poly I:C) [48]. The
mixture of peptides and adjuvants is given to the patient who has those specific
targeting neoantigens, and it is expected that APCs will uptake those peptides and
process them for presentation to T cells. Besides the peptide form, cancer vaccines
can be also formulated from nucleotide sequences (i.e. DNA and mRNA) that can be
encoded to predetermined neoantigens, the synthetic molecules could be engineered
with immunomodulatory molecules [49]. The nucleic acids vaccines are re-infused to

the patient, it must be also taken up by APCs, but not directly go to antigen processing
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like peptide vaccine. The DNA vaccines are translocated to the nucleus to induct the
transcription process, the resulting mRNAs (or RNA vaccines) migrate to cytoplasm,
and they are translated to peptides prior to getting the process of antigen processing

and MHC presentation [50].

™ oxy

Identify potential
neoantigen
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Figure 3.7 The development of cancer vaccine derived from neoantigens. There are
several types of neoantigen based cancer vaccine formulation including cell-based

vaccines, peptide based vaccines, and nucleic acids based vaccines.

3.3.3 Preclinical and clinical studies of cancer vaccines targeting neoantigens

The principal of personalised cancer vaccines is unlike a traditional vaccine against an
immune disease, since DNA alterations across different patients have enormous
diversity. The current approach is for neoantigens of an individual patient with
malignant tumour to be identified; the pre-determined neoantigens are synthesised and

formulated to various forms (peptides, DCs loaded, RNA, or DNA vaccines) with the
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appropriated adjuvants prior to administrating to the patients. In recent years, there are
several studies from both pre-clinical and clinical studies that have shown success
with cancer vaccines in activation of immune response and suppressing tumour
growth. Castle et al. performed a peptide-based cancer vaccine targeting neoantigens
in a mouse melanoma model. They identified somatic mutations from whole exome
sequencing (WES) from B16F0 murine melanoma and selected 50 mutated genes to
generate synthetic mutated peptides. Those mutated peptides were tested for their
immunogenicity using IFN-gamma ELISpot assay, there were 16 immunogenic
peptides that were given to tumours transplanted mice. The results showed that two
neoantigens (peptides derived from mutations of Kif18b (K739N) and Cpsf (D314N))
can reduce cancer progression and improve the survival rate [51]. The group of
Yadav determined neoepitopes from MC-38 cell lines by combining the approach of
mass spectrometry and prediction from WES. The selected mutated peptides
including those derived from Adpgk, Repsl, and Dpagtl proteins were injected to
mice with MC-38 tumour, they found that mice with the vaccination have a decrease

of tumour growth [52].

The first clinical study of a DCs-based cancer vaccine had been reported by Carreno
et al. Somatic mutations were identified from WES, and candidate neoantigens were
selected from the prediction of MHC-binding prediction algorithms. Neoantigen
loaded DCs were administrated to three melanoma patients. It was found that
neoantigens of DCs-based vaccine can expand the diversity of neoantigen specific T
cell since the clone of T cells that are specific to neoantigens can be detected after
vaccination. Moreover, this intervention can also enhance the response of existing T

cells [53]. In 2017, there were two studies that demonstrated clinical trials using
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neoantigen-based cancer vaccine in patients with melanoma. The first one from the
Dana-Faber Cancer Institute reported the efficiency of neoantigen based personalised
cancer vaccine for advance stage of melanoma patients. Candidate neoantigens were
identified from mutated peptides using MHC-peptide binding prediction, fully
described in Section 3.4. Six melanoma patients were given mutated peptide-based
vaccine, the result showed the identified neoantigens from a prediction pipeline
preventing a recurrence of cancer of 4 from 6 patients after surgery for at least two
years [44]. With a similar identification strategy, the research group of Sahin prepared
RNA-based vaccine instead of peptides and re-infused to 13 melanoma patients. The
analysis of immunosurveillance in peripheral mononuclear blood cells (PBMC) from
patients after vaccination demonstrated that the RNA coded neoantigen vaccine
boosted the activation of existing T cells clones specific to neoantigens [45].
Furthermore, two recent studies in 2019 have reported the effect of a neoantigen-
based cancer vaccine in glioblastoma, which is more challenging than the study of
melanoma because glioblastoma typically have low mutation burden i.e. a low
number of neoantigens derived from mutated proteins resulting in a less promising
response in cancer immunotherapy [54]. Hilf et al. performed a peptide-based vaccine
from synthetic peptides of pre-determined neoantigens and infused to 15 glioblastoma
patients. Patients who received the neoantigen vaccination showed activation of
CD4+ T cells against predicted neoantigens, and their median survival were improved
for 29 months from diagnosis [55]. The other study from the group of Dana-Faber
Cancer Institute, who previously studied in melanoma, personalised neoantigens from
ten patients with glioblastoma were identified using the same strategy as the previous

work [44]. Neoantigen-based cancer vaccines were formulated from synthetic
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neoepitopes mixed with appropriated adjuvants and inoculated patients after surgical
resection combining conventional radiotherapy. The identified neoantigen-based
vaccine elevated the number of tumour infiltrating T cells and enhanced circulation of
effector CD4+ and CD8+ T cells [56]. Overall, successful evidences from clinical
studies demonstrate the potential of personalised cancer vaccine targeting neoantigens

as an efficient cancer treatment that can deal with great diversity of cancer disease.

3.4 The methodologies for neoantigen determination

The goal of cancer vaccine targeting neoantigens therapeutic is establishing of T cell
function for attacking tumour cells because T cells are the major effector cell
populations that specifically responds to tumour antigens. Therefore, the
determination of neoantigens that are specific for cancer cell is a crucial step for
therapeutic success. With the advance of omics technologies, peptides that could be
potent neoantigens can be determined by using the approach of immunopeptidomics

via mass spectrometry or MHC-peptides binding prediction algorithms.

3.4.1 The approach of mass spectrometry (MS) based immunopeptidomics

As mentioned before, neoantigens are presented on the cell surface via MHC
molecules the immunopeptidomics is used to study profiling of peptides bound HLA
molecules, called HLA binding peptide (HLAp). The HLAp from tumour cells are
isolated by the immunoprecipitation method using specific antibodies against HLA
molecules. Normally, W6-32 is used to precipitate HLA class I, and IVA12 is used
for HLA class Il. HLAp complexes are then purified to elute peptides from HLA
molecules, eluted peptides are prepared for liquid chromatography coupled with

tandem mass spectrometry (LC-MS/MS) to identify MS/MS spectra. The MS spectra
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are then searched against customised protein database to identify the amino acid
sequence of the eluted peptides [57]. A key step in MS workflows is the matching of
spectra against a predetermined sequence database. If a sequence is not present in the
database, then a match cannot be made using this methodology. Databases containing
very large sets of sequences, for example including all possible sequences or
mutations are costly in terms of search time and statistical power, and thus an ideal
strategy is to create a database from the sequences likely present in a given individual
i.e. the database for searching can be generated to include peptides carrying non-
synonymous somatic mutations derived from WES of matched tumour/normal tissue
from the patient, which is important to selected mutated peptides that specific for an
individual patient. Most studies using MS-based method are combined with the
analysis of WES or RNA sequencing data because a customised database is essential
for identifying peptides containing mutated amino acids. Bassani-Sternberg et al.
demonstrated that the combination of MS and WES data can identify 11 mutated
peptides, of which two of them were immunogenic and could trigger activation of T
cells specific that neoantigens [58]. Furthermore, the combination of MS analysis and
genomic sequencing analysis have been shown successful in neoantigen identification

for both pre-clinical and clinical studies as described in the Section 3.3.3.

The approach of immunopeptidomics is a direct method to identify neoantigens that
can be really expressed and presented via MHC proteins on cell surface. Thus, this
method can reduce the risk from obtaining false neoepitopes compared to
computational prediction methods [57], this issue might be crucial for planning
interventions because only a handful of peptides are selected to perform immunogenic

experiments and for cancer vaccine development. Besides neoantigen-derived somatic



27

mutations, MS based immunopeptidomics also discover neoantigens that can be
derived from proteasome splicing, unusual post-translational modification, and non-
coding RNA [59]. However, the number of peptides identified from MS analysis
depends on size of tissue sample especially in case of low mutation burden, small size
of tissue samples requires the high sensitivity and accuracy for peptide identification
[60]. In general, the identification of neoantigens using MS needs a large size of tissue
sample for sample preparation e.g. bigger than 1 cm®. Although, in clinical practical,
the big size of tumour tissue from surgery resection is not feasible for most cases,
therefore, studies of neoantigens determination using MS experiment are mostly

limited in the scope of cell culture experiments [61].

3.4.2 The approach of bioinformatics in genomic sequencing and computational
analysis

Using an in silico approach, the putative neoantigens are determined from the
predicted binding affinity between mutated peptides and HLA molecules carried by
an individual patient using the MHC-peptide binding affinity prediction algorithms.
This approach is underpinned by next generation sequencing (NGS) data and
bioinformatic software packages to generate the list of mutated peptides and HLA
alleles. Somatic mutations can be identified from WES data of matched normal and
tumour cells from an individual patient, only mutations that alter protein sequences
are retained. A set of short peptides containing mutated amino acid(s) are extracted
from each patient’s data set. Patient specific HLA alleles can be determined by either
computational alignment methods or genotyping from blood samples. Since the
mutated peptides are called from DNA sequencing data, RNA sequencing data is

utilised to filter neoantigens derived from expressed proteins [62]. The MHC-peptide
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prediction-based method require a smaller size of tumour tissue sample compared to
MS based immunopeptidomics method, which are thus more feasible in real clinical
practice. Moreover, with the advance of NGS technology, nucleotide sequencing from
vesicular DNA derived from liquid biopsy could be performed, and that can allow
feasibility for both solid and non-solid tumour [63]. Most algorithms predict the
MHC-peptide binding affinity by learning from only chemical properties between
peptides and MHC molecules from in vitro experiment. With the continuous
developments in peptidomics studies, the performance of MHC-peptide binding
affinity prediction algorithms has been improved by large training data sets derived
from MS experiments, which are mostly deposited in public databases e.g. the
Immune Epitope Database (IEDB) [64]. However, the diversity of HLA alleles
contributes to the enormous variety of their binding preferences, which cannot be
completely covered by available training data at the present. Thus, those alleles with
few experimental peptides for training algorithms might give low precision of

predicted performance [65].

3.5 Neoantigen prediction with the approaches of bioinformatics

Tumour specific neoantigens are non-self, mutated peptides presented by MHC
molecules on the tumour cell surface, which have the potential to trigger the
activation of tumour specific T cells. Neoantigen identification based computational
prediction involves multiple processes including somatic mutation identification,
HLA determination, and MHC-peptide binding prediction, then candidate neoantigens
are prioritised and selected according to their potential for being immunogenic
peptides (Figure 3.8). The source of mutated peptides come from the genomic

alterations during cancer cell division. To identify neoantigens from sequencing data,
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the WES data from normal and tumour tissue as well as RNA sequencing data are
typically needed. In this section, the existing bioinformatics tools that have commonly
used in neoantigen prediction are described, which include bioinformatic software for
NGS analysis, programs for variant calling, the methods of in silico-based HLA
genotyping, RNA quantification analysis, MHC-peptide binding algorithm, and the

current existing pipelines for neoantigen identification.

1. Sample 2. WES/RNA 3. Bioinformatic
collection sequencing analysis
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Figure 3.8 Neoantigen identification workflow from WES and RNA sequencing data
with computational analysis.

3.5.1 Non-synonymous somatic mutations identification

There are many types of non-synonymous mutation causing the alteration of protein
sequences such as nucleotide point mutations, frameshift mutations, insertion,
deletion, and structural variants. Single nucleotide variants (SNVs), small insertions

and deletions (Indels) are common genetic alterations that can be merely detected
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from the short-read sequencing platforms with software packages of genomic analysis
[66]. However, the data from whole genome sequencing (WGS) allows for more
sensitive and accurate small variants detection, moreover, the structural variants and
copy numbers can be reliably detected from WGS, which can increase the repertoire
for mutated peptides [67-69]. In clinical practice, exome sequencing is preferred
because only coding variants can be neoantigens, and WES assay is more feasible in
term of cost, infrastructure capacity, and lower error rate compared to long read
platforms such as WGS [66]. Nevertheless, the integrated use of the WES and WGS is
the most suitable way to generate the best results [70]. There are three major steps for
identification of non-synonymous somatic mutations, Firstly, both tumour and normal
sequencing data are aligned to a reference genome, then the alignment results are
processed to determine the genetic variants. Finally, mutations from a variant calling

step are annotated whether they are in coding or non-coding regions (Figure 3.9).
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Figure 3.9 The workflow of non-synonymous somatic mutations calling from
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matched tumour-normal WES data.

a. Sequence alignment and pre-processing analysis

The alignment of sequencing data to a reference genome is a crucial phase in genomic
sequencing analysis [62]. The raw sequencing data in the FASTQ format are initially
aligned to the human reference genome using an aligner tool such as Burrows-
Wheeler Aligner (BWA) [71], this tool is commonly used by GATK pipeline [72].
Besides aligner tools, a reference human genome is also important for this step, the
use of a recent version of reference human assembly genome provides a logical
improvement over the old versions in quality of genomic alignments and downstream
analysis [73]. A result file from alignment is stored in the format of binary

alignment/map (BAM) [74], then duplicated reads that originate from the same
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sequence, which might yield from polymerase chain reaction (PCR) step during DNA
sample preparation, are removed by BAM file manipulation tools such as Samtools
package, Picard, or Sambamba [74-76]. The process of quality control for BAM files,
which are base quality score recalibration (BQSR) and indel realignment, is strongly
recommended to be performed prior to variant calling to evaluate sequencing
coverage and prevent false positive variants coming from alignment artifacts that
might be called in the variant calling step [72]. Following the steps of sequence
alignment and pre-processing BAM files, the analysis-ready BAM file is further used

as an input file for the variant calling step.

b. Somatic mutations calling

The main propose of tumour sequencing is identifying tumour mutations excluding
germline mutations that are existing in both normal and cancer cells, thus the best
practice analysis for somatic mutation calling must exploit sequencing data from
paired of tumour and normal samples. There are several existing variant callers that
have been specifically developed for determination of somatic mutations. Among
them, MuTect2 [77], Streka2 [78], and VarScan2 [79] are widely used for somatic
mutation analysis with aligned data from tumour and normal simultaneously [62].
Those tools can identify both SNVs and Indels from analysis of BAM files of a paired
tumour and normal, only MuTect2 can optionally applied with unpaired tumour-only
samples. There is no single tool that gives superior performance among various
somatic mutation callers, hence an ensemble usage that combines the results from
multiple tools might yield the best result with a balance of sensitivity and specificity

[80, 81]. The analysis produces an output stored in variant call format (VCF), a text



33

file with details of single nucleotide polymorphisms (SNPs) and Indels with various

properties of that variant represented in the columns [82].

c¢. Non-synonymous mutations annotation

The details of variants called in a VCF file format can be further interpreted to
consider the consequence of those variants such as impact on protein expression or
association between variants and diseases. For neoantigen identification, the approach
of transcript annotation is utilised to identify mutations that subsequently change
protein sequences. The Ensembl Variant Effect Predictor (VEP) is a software tool for
annotation and analysis various type of genomic variation in coding and non-coding
regions. This software is critical for variant annotation and a subset prioritisation for

further analysis [83].

3.5.2 Quantifying gene expression

RNA sequencing is commonly used to measure levels of transcript expression,
however, the accuracy of inferring gene expression level from short sequencing reads
is one of the challenging issues for quantitation of gene expression levels [84]. In the
recent years, several RNA analysis tools have been developed to quantify a transcript
level from short read RNA sequencing. Conceptually, short sequencing reads are
assigned to their originated transcripts, and that information is used to estimate gene
abundances [85]. With the traditional methods, short sequencing reads are aligned to a
reference genome to identify the transcript they arise from, then the relative gene
expression levels can be inferred from reads mapping to annotated gene loci [86, 87].
Cufflinks is a popular tool-based alignment, it is mostly used for novel transcription

discovery and quantification transcript levels for differential expressed gene analysis
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[88]. However, the methods rely on an alignment step that can be time consuming and
computationally intensive. Currently, there are a number of novel tools that do not
rely on the step of a reference genome alignment, so-called an alignment-free method
[89, 90]. Tools based alignment-free quantify transcript levels using a k-mer counting
algorithm. They work by extracting sequence reads into k-mers followed by matching
of k-mers to pre-indexed transcript databases using a hash table. The common tools
with alignment-free sequence analysis are Sailfish [89], Salmon [91], and Kallisto
[90]. They perform ultra-fast analysis, consume less computational resources, and
yield high accuracy, the benchmarking studies reported their performance are
comparable [92-94]. The workflow for RNA-seq quantification is shown in Figure
3.10, the final output files from the current RNA-seq tools are generally reported as
summarised read counts for each transcript or relative expression level in TPM

(Transcripts Per Million).
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3.5.3 In Silico HLA class I typing using next-generation sequencing data

To apply MHC class I-peptide binding prediction tools, patient-specific HLA alleles
of MHC class | including HLA-A, HLA-B, and HLA-C must be determined, the class
of human MHC was fully described in Section 3.1.2. The gold standard for HLA
genotyping is laboratory-based sequence specific PCR amplification [95].
Alternatively, the computational approach for HLA typing based on genomic or
transcriptomic data from a peripheral blood sample or normal tissue are commonly
performed to determine HLA alleles [96]. At present, there are a number of HLA
class | calling algorithms that display prediction accuracy as good as results from
HLA typing using DNA-based techniques [97, 98]. HLA genotyping algorithms
mostly follow one of two major approaches that are an alignment-based method or an
assembly-based method. The approach relying on alignment works by mapping
sequencing reads to reference HLA sequences, and types of HLA are determined
based on probabilistic models. The assembly-based methods assemble reads into
contigs and align them to known HLA allele sequences, true HLA alleles are
annotated by the best similarity score between the contig and each known HLA
sequence [97]. The benchmarking study reported that OpiType [99] and PHLAT
[100] display the highest accuracy with WES or RNA sequencing data, Opitype can

reach up to 99% accuracy if limited by MHC class | only [97].

3.5.4 HLA class I-peptide binding affinity prediction

The binding interaction between MHC molecules and peptides plays a key role in
subsequent T cell activation and triggering the adaptive immune response. In the
context of neoantigen identification, the binding affinity prediction is used for the

initial step for selecting candidate neoantigens for downstream experiments. Over the
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past few years, several binding affinity prediction algorithms based on machine
learning approaches have been launched, and most are publicly available (Table 3.1).
The predictors relying on machine learning distinguishing a peptide as a binder or
non-binder by generating a predicted binding affinity score using the training model
based on extracted representative features. However, the presentation of peptide on
MHC molecule contains several complicated steps from protein expression, protein
degradation, entering to ER, compatibility of peptide and MHC, and stability of the
complex [10]. Thus, only binding affinity data might not be sufficient for representing
whether a given peptide to be presented as an MHC ligand. Advances in the approach
of MS can provide peptidome data, generated from eluted MHC ligands of MHC-
peptide complexes from in vitro using an immunoprecipitation technique followed by
MS characterisation [101]. Recently, the existing MHC-peptide binding prediction
algorithms utilise either only peptidome data or combination of MS peptides and
binding affinity data, which would contain the comprehensive signal of antigen
processing and presentation rather than binding affinity alone [3, 102, 103].
NetMHCpan uses an artificial neural network with trained on a data set combining
data on binding affinity and MS eluted ligand data. MHCflurry is MHC class |
predictor which also uses a neural networks technique for data training, the models in
MHCflurry have been built by either only binding affinity data or combined with MS
data. The major difference between two tools is the prediction of specific MHC
alleles. While NetMHCpan uses the approach of pan-allele model which is a single
model takes as input both the peptide and a representation of the MHC alleles [2],
MHCflurry is an allele-specific predictor whereby training and selection of models

are done separately per allele [3]. Among those publicly available predictors, the
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prediction tools from the NetMHC family developed by Morten’s group at the
Technical University of Denmark are commonly used in clinical studies. The
systematic benchmark analysis reported NetMHCpan and MHCflurry display a good

performance in distinguishing binding from non-binding peptides [1].

The output from both prediction tools reports similar information including the
predicted half maximal inhibitory concentration (ICso) value in nM unit and the
predicted percentile rank (% rank) score. Nevertheless, there is no an actual threshold
for precise determining a binder, 1Csp < 500 nM is the common threshold for binding
affinity which classify that a peptide is a binder [104]. The predicted % rank scores
are estimated as the rank position of a given score within a list of scores from a set of
125,000 of 8-12 mers random natural peptides (25,000 of each length), assumed to
represent the distribution of false results (non-binders) or general background non-
specific binding of regular human peptides. NetMHCpan4.0 documentation
recommends using the % rank score rather than the predicted binding affinity since
the different MHC molecules have a different preference of binding affinity.
NetMHCpan4.0’s developers also performed the sensitivity and specificity curve as a
function of the % rank score, and a rank < 2% was selected as a threshold which has
both high sensitivity and specificity [2]. MHCflurry reports the value of the predicted
binding affinity, ICsp in nM unit, (“mhcflurry prediction”), the low and high
predicted binding affinity which come from the top 5% and the bottom 95% from
different models of each allele, and the % rank scores (“prediction_percentile) that
are estimated from the quantile of the affinity prediction among a large number of
random peptides tested on that allele. This tool also suggests users to apply ICso < 500

nM as a threshold to classify a binder and a non-binder. However, the source
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MHCflurry publication did not include sensitivity and specificity analysis to select the
threshold for the % rank and do not recommend which the % rank threshold to be
used for selecting binding peptides [3]. The topic of statistics related to MHC-peptide

binding is the specific focus of Chapter 4.



Table 3.1 MHC class I-peptide binding affinity prediction tools
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MHC-binding

affinity prediction | Predictive methods Key features Pupllcly
; available
tool (version)

NetMHC4.0 [105] | Artificial neural This tool is for prediction of MHC-
network-based peptide binding affinity, it allows Yes
algorithm, NNAlign multiple lengths of peptides.

(allele-specific)

NetMHCpan4.1 Acrtificial neural This model is trained by expanded

[102] network-based data from both binding affinity data Yes
algorithm, NNAlign | and eluted peptide data identify by
(multi-allelic) mass spectrometry.

NetMHCcons1.1 NetMHC, A predictor is for analysis of

[106] NetMHCpan: artificial [ combinations of three MHC-
neural network-based | peptide binding predictor tools. Yes
PickPocket: matrix-
based

MHCflurry2.0 Neural network This tool combines new model for

[107] MHC class | binding prediction and

antigen processing, which are Yes
trained by MHC | bound ligands
identified by MS.

MHCnuggets2.3 Long short-term This tool can predict binding for

[108] memory (LSTM) common or rare alleles of MHC Yes
neural network class | or class II.

MHCSeqNet [109] [ Natural language This tool models amino acid
processing based sequence of MHC allele and
neural network peptide as sentences with amino

acids as individual words, which Yes
allow a prediction of unseen MHC

alleles and peptides with any

length.

EDGE [103] Deep learning Training data from deconvoluted

specific HLA-peptide identified by No

MS analysis
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3.5.5 Existing multi-step neoantigen prediction pipelines

As described above, neoantigen identification involves several steps from pre-
processing data and input data preparation to binding affinity prediction. Over the past
few years, several multi-step workflows relying on MHC-peptide binding predictors
have been developed, those tools have built custom code to extract and generate a list
of short-mutated peptides from a variant call file and perform command line-based
analysis for running of MHC-peptide binding prediction tools. Furthermore, those
workflows have integrated a variety of analysis methods besides binding prediction,
which can help user to make a shortlist of candidate neoantigens (Table 3.2).
However, those tools do not implement the steps for variant calling, HLA genotyping,
and quantifying gene expression level, they usually require data input as a mutation
file in VCF format, list of HLA alleles, and transcript expression level in a tabular
format. Some workflows only perform binding affinity prediction and annotate gene
name to input peptides, then return the result table that provide information for a pair
of mutated peptide and HLA allele, such as predicted binding affinity, name of gene
that peptide originate from, gene expression level, or variant types, but some of those
workflows have integrated mathematical operation to compute a ranking score or
machine learning models to classify levels for an individual predicted peptides that
can help to select a shortlist of candidate neoantigens for downstream experiments.
pVacseq is a well-documented automated pipeline for neoantigen prediction, this tool
uses WES or RNA sequencing data to systematically generate the repertoire of
mutated peptides, perform binding prediction, and apply the filter criteria to make a
shortlist of candidate neoantigens. Aside from binding affinity and gene expression

level, this program filters candidate neoepitopes from the depth coverage of
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sequencing reads and variant allele frequency [110]. pVacseq has recently been added
in pVactools, a computational tool suite for neoantigen characterisation and vaccine
designs [111]. MuPeXI requires data input similar to pVacseq and also incorporates a
binding predictor from NetMHC suite. The major difference is the process of creating
a shortlist of candidate neoantigens, MuPeXIl has a built-in multiplicative function to
calculate a ranking score for an individual peptide deriving from the input variants.
The prioritisation score is computed based on HLA-binding affinity, similarity
between mutated peptides and their self-counterpart, mutant allele frequency, and
gene expression levels. Moreover, MuPeXl provide the full set of identified
neopeptides in a tabular format containing several informative annotations and
prioritising scores that users can easily sort and filter to select candidate neoantigens
[112]. However, strong binding peptides with high expression level does not ensure
that they can be recognised by T cell receptor, thus, the recent study have put an effort
to develop the workflow augmented with the model-based machine learning to predict
immunogenicity of candidate neoantigens, such as Neopepsee [113]. The Neopepsee
workflow requires the data input from RNA sequencing and extracted mutated
peptides from input variants. This tool performs the binding affinity prediction using
NetCTLpan [114], then peptides with predicted binding affinity scores are further
determined immunogenicity using the build-in machine learning classifier, that
classifies the candidate neoeptiopes into three classes including high, medium, and

low according to the predicted immunogenicity.
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Table 3.2 Automated pipeline for neoantigen identification tools

Neoantigen Used MHC- Key features
identification binding
workflow prediction tools
ProGeo-neo [115] | NetMHCpan4.0 This workflow is for analysis data of genomics,
transcriptomics, and proteomics. The prediction of MHC-
peptide binding affinity from genomic data were screened
by proteomic data, gene expression, and T cell recognition
epitope.
pVACtools [111] NetMHCpan This tool identifies neoantigens from a variety of somatic
NetMHC alterations including structural variants and prioritises with
NetMHCcons ranking scores that account from binding affinity, gene
PickPocket expression, sequence read coverage, agretopicity.
MHCflurry Interactive visualisation is available.
MHCnuggets
neoANT-HILL NetMHC4.0 Mutated peptides can be generated from variants from RNA
[116] NetMHCpan4.0 sequencing data, a graphical user interface (GUI) is
NetMHCcons available.
NetMHCstabpan
PickPocket
MHCflurry
pTuneos [117] NetMHCpan4.0 Determination of neoantigen from predicted MHC
presentation and immunogenicity, prioritisation with
ranking scores that account binding affinity, sequence
similarity between a pair of normal and mutant peptides,
peptide, hydrophobicity score, and T cell recognition.
Neoepiscope [118] [ NetMHCpan4.0 This tool emphasises the process of variant calling, in the
MHCnuggets context of interaction of somatic mutation and neighboring
MHCflurry germline variants, and address variant phasing for SNVs
and Indels.
ScanNeo [119] NetMHC This workflow is for analysis RNA sequencing data to
NetMHCpan predict neoantigens derived from small to large sized Indels
antigen.garnish NetMHC This pipeline is combination of neoantigen prediction and
[120] NetMHCpan neoantigen quality analysis tools to predict peptide
MHCnuggests immunogenicity. Predicted affinities are averaged to
MHCflurry generate the ensemble score.
NeoPredPipe [121] | NetMHCpan This  automated  pipeline  connecting  commonly

bioinformatic software, processing data, prediction, and
summary statistics as output for downstream analysis.

retained_intron-
neoantigen_pipeline
[122]

NetMHCpan3.1

A computational approach to detecting intron retention
events from tumour RNA sequencing data to generate
peptides containing >1 amino acids from intron for
neoantigen prediction.
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Table 3.2 Automated pipeline for neoantigen identification tools (cont.)

Neoantigen Used MHC- Key features
identification | binding prediction
workflow tools
MuPeXI [112] NetMHCpan This pipeline automatically extracts mutated peptide

sequences and returns the informative output table with a
priority score for each predicted peptide.

Vaxrank [123] NetMHC A pipeline to determine which peptides should be used in a
NetMHCpan vaccine. This tool applied ranking scores to select putative
NetMHCcons neoantigens, and the output will be used to make long
MHCflurry peptides.

TSNAD [124] NetMHCpan2.8 A pipeline for extracting somatic mutations from genome

analysis and predicting potential neoantigens, which could
be either extracellular mutation of membrane proteins or
mutated peptides presented by MHC molecules.

Neoepitope NetMHCCons1.1 | A pipeline for identification of putative neoantigens based
prediction [125] on somatic missense mutations and gene fusion using whole
genome sequencing data.

CloudNeo [126] NetMHCpan A cloud-based computational workflow for identifying
patient specific tumour neoantigens for NGS sequencing
data. This workflow can run on cloud platform of NCI
Cancer Genomics Cloud, which provide graphical user
interface.

3.6 Prediction of immunogenic T cell epitopes

The ultimate goal of neoantigen prediction is getting peptides that can be recognised
by T cell receptors and activate the adaptive immune system to eliminate cancer cells.
The process of antigen processing and MHC presentation allows T cells to detect
antigens derived from invaded pathogens or mutated peptides expressed by cancer
cells. MHC presented peptides that can trigger an immune response are described as
epitopes. Even though all epitopes must be presented by MHC molecules, but not all
MHC ligands can stimulate T cells activation. Most neoantigen prediction workflows
currently rely on MHC-peptide binding prediction to identify neoepitopes, that step is

necessary but might not sufficient to determine real neoantigens. The best validation
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of immunogenicity is the wet experiments i.e. cytokine secretion assays, such as
ELISpot or ELISA, intracellular cytokine-staining assays, such as flow cytometry
assays, however those experiments are time and resource consuming. In recent years,
there has been an expansion of databases that collect experimental data from
laboratories, the computational methods for immunogenic prediction therefore
become an alternative for epitope identification [127]. In this section, in silico

methods for immunogenic MHC class | ligands prediction are emphasised.

3.6.1 Properties of immunogenic MHC class | presented peptides

A specific MHC presented peptide will be recognised by an estimated average of one
in 100,000 naive T cells [128]. The peptide-immunisation experiments have shown
that about half of the presented peptides are epitopes, which means all epitopes are
MHC binding peptides, but not all MHC presented peptides are immunogenic
peptides [129]. The identification of epitopes is crucial to the study and understanding
of cellular immune responses and great importance in vaccine development. The
strength of interaction between MHC | presented peptides and TCR depends on both
MHC class | molecule and the presented peptide. However, the extreme high diversity
of T cells is a key factor to characterise the specificity between TCR and a peptide.
According to sophisticated steps for MHC-peptide presentation and T cell
recognition, as described in Section 3.1.3, the recent computational approaches
consider predicting epitopes from peptide sequences. Since TCR-epitope interaction is
governed by the physicochemical principles like other protein-protein interactions,
thus, more immunodominant epitopes are expected to have some preferred properties
that can make a stronger interaction with TCRs than non-epitopes. Within that

context, physicochemical properties and amino acid characteristic of epitope and non-
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epitope peptides has been investigated. A set of immunogenic and non-immunogenic
of MHC 1 presented peptides were collected and compared the amino acid frequencies
and physicochemical properties of each amino acid in peptides from both sets under
the hypothesis that the certain amino acids are more likely to interact with TCRs. The
study showed that large and aromatic residues such as Phenylalanine and Tryptophan
were overrepresented in a set of immunogenic peptides, and a trend for
overrepresentation of acidic residues was observed in immunogenic presented
peptides. In addition, significant associations with immunogenicity were observed for
Isoleucine, Lysine, and Methionine [130]. Moreover, the structural studies and
immunogenicity studies of specific T cell clones with altered peptide ligands
demonstrated that some position in a presented peptide, especially positions 4-6, are
in close contact with TCR and important for specific T-cell responses [131, 132]. The
amino acid profile of each position in an MHC class | presented peptide were
compared in both sets of immunogenic and non-immunogenic peptides, the
significant difference was found in the position 4,5, and 6, but not found a substantial
difference of amino acid profile at other positions [130]. The information from those
studies indicates that immunogenic MHC | presented peptides have some certain

signatures for T cell recognition.

3.6.2 In silico prediction methods

The increasing of data repositories and advance in immunoinformatic facilitate data
management and development of predictive methods for T cell epitope prediction.
SYFPEITHI is one of the oldest immune epitope databases and contains more than
7000 peptides that bind to MHC class | and Il molecules [133]. Although, the data in

SYFPEITHI became static in 2012 due to increasing utility of IEDB that has been
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established since 2004. The advance in high throughput experiments results in a
rapidly increase in the number of curated epitopes in 2015, and the recent update
reported IEDB contains >1.6 million experiments representing the adaptive immune
response to epitopes [134]. The epitope data in IEDB are not only from human and
mouse but also from chimpanzee, macaque, cow, and pigs [135]. A recent report
showed that IEDB stores more than 1,000,000 peptides with positive result derived
from T cell assays, B cell assays, and MHC ligand assays, and more than 500,000
peptides with negative result [136]. Several bioinformatics prediction tools determine
T cells epitopes by a strength of binding interaction between peptides and MHC
molecules based on the biological process that the TCR can bind to only an MHC
presented peptide. These approaches rely on the fact that generation of the peptide by
natural processing and subsequent HLA binding are key necessary steps for T cell
immunogenicity, but HLA binding peptides might not be sufficient to be
immunogenic peptides [137]. A methodology involves directly using epitope and non-
epitope data to train the predictive network by learning from physicochemical
properties of peptide sequences to predict if a peptide can be immunogenic. However,
the determinants of epitope immunogenicity in association with their recognition by T
cells remain poorly understood. Given the fact that different individuals have different
TCR repertories, in theory, epitope immunogenicity should differ between

individuals.

The structure requirements for the interaction of MHC presented peptide complexes
and TCRs as well as the different properties in the motif between immunodominant
epitopes and non-epitopes are increasing understood [130, 137]. There are currently a

wide variety of sequence-based prediction methods for T cell epitope prediction,
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which attempt to use computational methods to discriminate epitopes and non-
epitopes by the physicochemical principles and distribution of amino acids in a
sequence (Table 3.3). Immunogenicity has been launched in 2013, and the user
interface software is available at the IEDB. This tool predicts MHC class | presented
peptides into two categories for epitopes and non-epitopes. Immunogenicity was build
based on the enrichment of amino acids and the importance scores of different
positions of the MHC | presented peptides between immunogenic and non-
immunogenic peptides [130]. NetTepi was developed based on MHC-peptide stability
prediction tool, NetMHCstab [138] with the aim of creating an integrated method for
T cell epitope prediction, combining MHC-peptide binding affinity, stability and T
cell propensity predictions [139]. TCR classifier is developed to predict the
recognition of a peptide from the sequence patterns of CDR3 region in the TCR. This
model was build based on the TCR sequences of HLA-B*08, the results demonstrated
the feasibility of the approach of prediction of T cell epitope recognition based on
sequence data, but does not cover other HLA alleles in practice [140]. Moreover,
there is a current tool that uses a computational framework mimicking the
thermodynamic interaction between peptide-MHC complexes and public TCR
clonotypes, termed TCR-peptide contact potential profiling (CPP), generates
probabilistic estimates of immunogenicity [141]. INeo-Epp is the current T cell
epitope prediction tool, which has web-based user interface. This tool combined
several factors involved in physicochemical properties of amino acids such as
accessibility, molecular weight, molecular structure, hydrophobicity, polarity,
entropy, and charge as well as MHC-peptide binding affinity for training epitope and

non-epitope peptide data set to develop the T cell epitope classification model [142].
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Table 3.3 T cell-MHC class | epitope prediction tools

Tool Predictive method Features for model learning
Immunogenicity | Immunogenicity | Molecular weight, charge, the importance of
[130] score positions in a peptide
NetTepi [139] |Integrated Peptide-MHC binding affinity and stability, T

predicted scores | cell propensity
from

NetMHCcons

NetMHCstab

Immunogenicity

TCR-classifier
[140]

Random forest
classifiers

Properties of the CDR3: sequence length,
absolute count of each amino acid, basicity,
hydrophobicity, helicity, isoelectric point, and
mutation rate

Repitope [141]

randomised trees
(ERT) algorithm

Peptide length, amino acid existence, peptide
description, and TCR-peptide contact potential
profiling (CPP)

INeo-Epp [142]

random forest
classifier

Amino acid physicochemical property, MHC-
peptide binding affinity, peptide entropy,
predicted immunogenicity score from
Immunogenicity
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3.7 The Expectation Maximisation (EM) algorithm for parameter estimation

The EM algorithm, introduced by Dempster et al. in 1977 [143], is an efficient
iterative method to compute the Maximum Likelihood (ML) estimation in statistical
models with the presence of unobserved latent variables. Each iteration cycles
between two processes including the E-step (Expectation) and the M-step
(Maximisation). The E-step attempts to estimate the missing data or latent variables
given the observed data and current estimated parameters of the distribution. Then,
the M-step tries to optimise the parameters of the model by maximising the likelihood
function with the assumption that the missing data are known, where the missing data
are placed from the estimation in the E-step. The application of EM algorithm is
widely used for estimating missing data for clustering in a mixture model, or in ML
estimation, moreover, the EM approach is commonly used for estimating parameters
of the distribution [144]. In this section, the use of EM algorithm for parameter

estimation is highlighted.

To describe what probability each random variable has in the whole data, the model
family and parameters for a distribution must be known for the situation of interest.
However, in reality, the generative source of data might be uncertain i.e. the model
family and parameters representing that distribution are not known, thus it is essential
to explore and predict the parameter values and the statistical model that can well
describe data distribution. Parameter estimation is a branch of statistics that
contributes tools using observed data to estimate parameters of a distribution, so-
called estimator [145]. By leveraging the EM algorithm, the approach of ML
estimation is a well-known method and commonly used. The EM algorithm iteratively

switches back and forth between the two steps of the E-step M-step to optimise the
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estimate parameters by likelihood maximisation. If the estimate parameters or the
likelihood are not getting to convergence, the new parameters from the M steps will
return to the E-step. Finally, these two steps are repeated until the estimate model get
the convergence [146]. To find a maximum likelihood solution, it generally involves
the derivatives of the likelihood function that requires taking all the unknown values,
the parameters, and the latent variables, and together with solving the resulting

equations [143].

Besides the conventional method with likelihood function, the estimation with method
of moments is also widely used for the parameter estimation approach. The method of
moments estimators is simple and in closed form. In statistics, method of moments,
introduced by Karl Pearson in 1984 [147], is an approach for population parameters
estimation such as mean or variance. This approach estimates the parameters of a
distribution model by matching the moments of the data set with that candidate
model. In the first moment condition, it expresses the expected values of random
variables under the parameters calculated from population as functions of the
population moments. Then, those equations are set as equal to the sample moment.
The number of those equations is equivalent to the number of parameters that are
desired to estimate, and they are solved for estimating the parameters of interest
[148]. With the EM framework, method of moments can apply in the estimation step
by replacing the likelihood function. Instead of maximising likelihood in the
estimation step, the parameters are optimised based on method of moment until
convergence [149]. One of the problems related to parameter estimation is we may
not know which types of statistical model would be best represent the distribution of

data. Hence, the distribution models representing observed data must be determined,
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once the best fitting distribution has been identified, the parameters of that function
can be then estimated. In the following section, the parameters estimation for a
mixture distribution of normal and non-normal (beta) distributions using EM

algorithm with ML estimation are described.

3.7.1 The parameter estimation using EM for a mixture of normal distributions

The normal distribution (also known as Gaussian distribution) is the single most
important distribution in natural and social sciences to represent real-valued random
variables. It is a type of continuous probability distribution that is described by a
distribution with a symmetrical bell shape which is parametrised by two parameters
that are mean (u) and standard variation (o) (Figure 3.11) [150]. The area under the
curve is the same and most of the values occur in the middle of the curve. The mean
controls the location of the central peak, while the variance controls the width of the
distribution [151]. The general form of its PDF and CDF with the form of error

function (erf(x)) are shown as the Eq. 3.1 and 3.2, respectively.
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Figure 3.11 The distribution shapes generated by the normal distribution with

different of mean and variance values.
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There are two distribution parameters including uand o, m is the mathematical
constant ~3.1415, the random variables in normal distribution can be any real number,
—oo < x < oo, However, some observed data might arise from more than one
generation process, such a distribution is represented by mixture distributions, which
are contributed from the average weight of two or more PDFs. The general form of a
Gaussian mixture model is the Eq. 3.3, where c is the number of components, each
component is contributed by the weighting parameter (w), 0 < w; < 1. The model

parameters including ., g; and w; are described in term of 6.

fG(x) = 2:]{:=1W]' ’ Nuj,o'j(x)— (33)
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A Gaussian mixture model is commonly used as a parametric probability density
function for a distribution of continuous measurement. The model parameters are
usually estimated using the iterative EM algorithm that aim to obtain the maximum
likelihood estimate of Gaussian parameters. Given the data have N observations, X =
{xs,...,.xn} , the likelihood for the Gaussian parameters of u and o displays in the Eq.
3.4, and the log-likelihood function is generally used because it is convenient for

derivative calculation (Eg. 3.5).

L olX) = o N(VZr) T exp [ (34)

202

[, 01X) = log[L(, 01X)] = —Nlog(0) — Nlog(VZm) — = TN_1(xn — 1)
(3.5)

For parameter estimation using the EM algorithm, we define X = {Xs,...,xn}, as
observed variables from a Gaussian mixture model, which have N data points and K
components, and Z = {zy,...,zn}, is denoted as a set of latent variables corresponding
to each data point of each component. The EM algorithm attempts to find the
maximum likelihood estimates for model parameters with latent variables, thus the
complete log-likelihood derived from the posterior of the latent variables of the data

X with the expression of normal distribution parameters (Eqg. 3.6).

log (P(X, Zlp,0,w) = Xh=1 Xi=12Znklog [NCons i, odwi]____ (3.6)
In the E-step, the current values of estimated parameters at the iteration i are used to
calculate the expected value of the latent variables (Eq. 3.7). Therefore, the expected

value of the complete log-likelihood is shown as the Eq. 3.8.

E N(xn;y};,cr,i)w,i
vl ugowh) il = S NG o

3.7)
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E[log (P(X, Zlu, 0,w)] = N1 Xk=1 E[Zni] 10g[N Ocn s o Wil (3.8)

In the M-step, the expectation of the complete log-likelihood needs to be maximised
to update parameters for the next iteration. The estimated parameters are solved from
the derivative of the expected complete log-likelihood with the respect to u, oy, and

wy, (Eq. 3.9-3.11).

i+1 _ Yn=1ElZnk]xn _ 15N
U~ = SN Elzpel Nk Zn:lznkxn— (3.9)

L \2
i+1 _ Zg=1 E[an](xn_ﬂllc+1)

1 . 2
Tk g = woen=tZu(— i) (310)
. N
Wli+1 — Zn=11€[znk] _ %— (3.11)

3.7.2 The parameter estimation using EM for a mixture of beta distributions

The beta distribution is a flexible model, with a continuous probability distribution
that takes values in the unit interval of 0 to 1. The beta distribution is widely used in
statistical analysis and data science (including bioinformatics applications) to model
the behaviour of random variables that naturally takes values between 0 and 1 such as
relative frequencies, probabilities, absolute correlation coefficients [152]. The beta
distribution is parametrised by two positive shape parameters that are denoted by a
and B, that materialises as proponents of the random variable and control the shape of
the distribution. The two parameters (o and ) must be positive numbers, and they can
produce a variety of shapes depending on whether a = 8, o <3, or a >  (Figure 3.12).
The beta probability density on [0, 1] forms as the Eq.3.12, and the CDF for the beta
distribution is also formed as the incomplete beta function ratio, that is normally

denoted by Ix (Eq. 3.13).
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Figure 3.12 The distribution shapes generated by the beta distribution with different

values of a and  parameters.
Even a single beta model can create various distribution shapes depending on

different combinations of the parameters of a and B, the mixtures of beta model are
more flexible. The general form of a mixture of beta distribution is shown as the Eq.
3.14, where c is the number of components, and w; is the weighting parameter for
each component, 0 < w;j < 1. The model parameters including a;, 8; and m; are
described in terms of 6. From the random variables, the parameter shapes of a and 3

can be described by the terms of u and o2 (Eq. 3.15-3.16).
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Given the data have N observations, X = {x,...,xn}, the likelihood function for the
beta distribution is the Eqg. 3.17, and the log-likelihood can take the form as the Eq.

3.18.

L@ B)IX) = () L, ) LG —x)f _ (31)

I(a, BIX) = log[L(a, B)IX)] = Nlog(T'(a + B)) — Nlog(T'(a)) — Nlog(T'(B)) +
(@ —1)Xn_qloglxy) + (B=DXn_qlog(1—x,) _ (318)

To estimate beta parameters using the EM algorithm with the ML method, the
procedures in the E-step is similar to a Gaussian mixture model, but the expectation is
considered with the probability density function of beta model. We denote X =
{X1,....xn}, Z = {z1,...,2n}, and data have K components. Thus, the expectation of the
complete log-likelihood for beta mixture model displays as the Eq. 3.19.
E[log(P(x,zIa,ﬁ,w))] it ﬁ=1 Zlk<=1 E[Z 1log [f (xn; ak, Bi) W]

(3.19)

The derivative of the expected log-likelihood of beta function is performed with the
respect to each parameter. The partial derivatives are set to zero to solve the update
parameters (Eq. 3.20-3.22). However, there is no closed form solution to the
derivative equation of a and B parameters if any observed data points are equal to 0

orl.

9 —yN U(+p) '@
aak E[log(P (x, Zlal Bl W))] - Zn:l E[an] I:F(OH'B) F(a) + 10g(xn)] . (320)
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(3.21)

aLWkE[log(P(x,zla, B,w))| = ZN_1 Elznk] Wik (3.22)

Since the derivative with the respect to w,, does not rely on the PDF of beta model,
thus the estimated w,, can be solved to get closed form same as the formula in Eq.
3.11. The major problem of the log-likelihood function for beta distribution is that it is
unable to estimate well for « # 1 if any observed data points are x, = 0, or for 8 # 1 if

any observed data points are x, = 1. Therefore, the implementations of ML estimators

might not be suitable for the best estimation of beta parameters.

As mentioned before, the approach of method of moments is also widely used for
parameter estimation, this method is straightforward, and the moment generating
functions can get finite forms for solving beta parameters estimation. There are
published studies that report the usage of method of moments for beta mixture
distributions [149, 153]. With the framework of EM algorithm, the application of
method of moments is used instead of ML estimation in the M-step to estimate the
update parameters until the estimation get the convergence [149]. In this chapter, the
approach of EM algorithm with method of moments was used to develop the model to
estimate the parameters of the predicted data from NetMHCpan4.1 and MHCflurry
instead of maximum likelihood estimation. The implementation of the EM algorithm
with method of moments for beta mixture parameters estimation is entirely described

in Section 4.11.
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CHAPTER 4

MATERIALS AND METHODS

4.1 Patient samples and sample preparation for DNA/RNA sequencing

The biospecimen samples were collected from nine colorectal cancer patients. The
sample collection and preparation were done by research staff at Chulalongkorn
University System Biology Centre (CUSB), Bangkok, Thailand. Tumour and blood
samples were obtained from study participants in King Chulalongkorn Memorial
Hospital, Bangkok, Thfigureailand. Tumour tissue and blood from each patient were
collected immediately after surgery resection. The method of Ficoll-Paque (GE
Healthcare, United States) density gradient centrifugation was used to isolate PBMCs
from a blood sample, PBMCs were cryopreserved with 10 pul RNAlater solution
(Qiagen, Germany). Tumour tissue was chopped to a size of 1 mm?3, then 0.5 mL
RNAIlater solution was added prior to storage at -80 °C. The fresh frozen tumour
tissues were minced into small pieces, and then 20 pl Proteinase K (Qiagen,
Germany) was added. The mixture of tissue and proteinase K were incubated at 56 °C
with agitation for 30 min. After an incubation period, the samples were centrifuged at
12,000 g for 3 min, the supernatant fraction was collected and transferred to two
RNase free microcentrifuge tubes for DNA and RNA isolation. Tumour and normal
DNA molecules were isolated from tissue lysate and PBMCs by DNA isolation kit
(Qiagen DNeasy kit, Germany). The amount of DNA was quantified using DNA
Quantitation Kit with the fluorescent technique (Merk, United States), to ensure there
was sufficient DNA for exome sequencing: higher than 200 ng in 50 pl. RNA from

tissue lysate was extracted using RNeasy kit (Qiagen, Germany), the quality control
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of RNA for the sequencing experiment was performed by the sequencing company.
The library of DNA and RNA were prepared, and nucleotide sequencing was
performed by the Vishuo company (Vishuo Biomedical, Singapore). Briefly, genomic
DNA was extracted and ligated with barcode Illumina sequencing adapters, then DNA
sequences were amplified, and short reads with 100-200 nucleotides were enriched.
Whole exome capture was performed using an Agilent SureSelect Human All Exon
V6. The libraries were then gPCR quantified, pooled, and sequenced with 150 base-

paired-end reads using HiSeq 2000 sequencers (IHlumina, United States).

4.2 Preparation of input data for MuPeXI

MuPeXI requires peptide sequences and MHC types (i.e. HLA allele) as mandatory
inputs, but gene expression levels are optional. Thus, WES and RNA sequencing data
are needed to process to determine non-synonymous somatic mutations, HLA alleles,

and gene expression level (Figure 4.1).

a.) Sequencing data pre-processing

The FASTQ file of WES data was initially processed to remove adapter sequences by
Cutadapt, and Fastqc was used to evaluate the data quality [154, 155]. Then,
sequencing data without adapter reads were aligned with the reference genome
(GRch38) using BWA with mem option (BWA-mem) [71], and a read group was
defined for each sample for the variant calling step. Picard tools with MarkDuplicates
option was used to remove redundant reads [75]. Indel realignment and base

recalibration were performed with GATK workflow [156].

b.) Determination of non-synonymous somatic mutation
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The analysis-ready reads of tumour and normal samples from a step above was used
to detect somatic mutations by Mutect2 [77]. Somatic mutations including point
mutations, small insertions/deletions and frameshift mutations were identified, then
list of somatic mutations with detail in columns were return in a VCF file format.

Non-synonymous mutations in the VCF file were further annotated using VEP [157].

c.) HLA genotyping

HLA class | alleles were determined from normal WES using the HLA typing tool,
called Athlates [158]. The algorithm aligns normal WES to the reference of HLA
class | sequences, including A, B, and C loci, from the IMGT database [11]. The
alignment coverage and Hamming distance are calculated to a similarity score. Two
HLA alleles with the first two sets of digits of each locus that have the highest percent

coverage and lowest Hamming distance were selected.

d.) Gene expression quantification

RNA sequencing data was quantified as the level of gene expression in Transcripts
per Kilobase Million (TPM) by Kallisto, which returns expression level of each gene

in a table with a tab-separated values (TSV) format [90].

4.3 Neoantigen identification using MuPeXI pipeline and candidate neoantigen
prioritisation

Somatic mutations in a VCF file, list of HLA alleles, and TPM level of each transcript
in a TSV file were used as inputs for the neoantigen prediction pipeline, MuPeXI
[112] (Figure 4.1). This workflow was designed to predict neoantigens based on
binding affinity between peptides and specific HLA alleles using NetMHCpan3.0

predictor [159], and a ranking score for an individual peptide is computed by a built-
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in multiplicative function, which calculates a prioritisation score based on predicted
binding affinity, similarity between mutated peptides and their self-counterpart,
mutant allele frequency, and gene expression level. MuPeXI returns the full set of
identified neoantigens in a tabular format containing several informative annotations
and ranking scores. The predicted results with available gene expression level,

candidate neoantigens were chosen by the criteria of ICso < 500 nM and TPM > 1.

However, in this study, RNA sequencing data are not available in some patients, in
that case, only predicted ICso values is the only data available to characterise binding
and non-binding peptides. In the clinical study, there are about 20-30 candidate
peptides further selected for downstream experiments, therefore, using predicted
binding affinity scores without gene expression level is not sufficient to rule out non-
neoantigens. Therefore, to create a shortlist of candidate peptides for the cases that do
not have gene expression information, the prioritisation system is set on the basis of
binding affinity and the potential for being an immunogenic peptide relying on a
difference from self-peptides, following approaches define in the work from Ott P.A.
et al., in 2017 [44]. The potential epitopes with predicted ICso < 500 nM were chosen
for inclusion based on a pre-defined set of criteria in the following rank order: (1) The
binding epitopes with frameshift, insertion, or deletion. These mutation types alter
more than one amino acid in the peptides, which is likely to make greater differences
between mutated peptides and their self-counterparts; (2) The increased binding
affinity epitopes with somatic single nucleotide variations at the HLA anchor residues
(position of 2 and 9), which can imply that peptides have never been presented by
MHC molecule to T cells; (3) The very high MHC binding peptide (less than 150 nM)

with somatic single nucleotide variations at non-anchored residues.
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Figure 4.1 Analysis workflow of neoantigen identification based on genomic

e

sequencing data and MHC-peptide binding affinity prediction.

4.4 Molecular dynamics (MD) simulation

The candidate peptides identified by the MuPeXI workflow were used in the MD
experiment. A set of 9mers peptides presented by HLA-A*02:01 from a patient who
express HLA-A*02:01 alleles which is Sample 6 (see Table 4.1) that have high

predicted binding affinity and high gene expression level were selected for MD



64

analysis, totalling seven candidate peptides. The 3D structure of HLA-A*02:01 with a
9mers peptide was downloaded from Protein Data Bank (PDB), the structure ID is
3QEQ [160]. The two peptides with low binding affinity (predicted ICso > 40,000
nM) and having negative charge residues at anchor positions were selected as a
negative control group (Table 4.1). The complex of HLA-A*02:01 and each peptide
were constructed by changing chemical elements of amino acids in the template
peptide to the mutated peptide in Table 4.1 using the Discovery studio 2.5 [161].
Finally, there are ten systems of HLA-A*02:01/peptide complex for performing MD
simulation, which are an HLA-A*02:01/template, seven complexes of HLA-
A*02:01/candidate peptide, and two complexes of HLA-A*02:01/negative control
peptide. All complexes were defined with the protonation state of each residues at pH

7.4 via the PROPKA3 [162].

In the step of MD simulation run, the module called Leap in Assisted Model Building
with Energy Refinement (AMBER) version 14 was used to add the missing atoms and
hydrogen atoms [163]. The complex structures were solvated in a 25 A radius, with
TIP3P model for water molecules. The isothermal-isobaric (NPT) ensemble with
constrained number of atoms (N), pressure (P) and temperature (T) was applied in a
periodic boundary. The AMBER 14 program with SANDER module was used to
minimise all water molecules in the protein complexes. MD simulation was
performed using the pmemd.cuda module with the ff03 force field in AMBER 14 for
all complexes, and snhapshots were stored every 0.2 ps during a trajectory of 100 ns.
For the analysis part, the MD trajectories in the production phase were collected for
analysis of complex stability, binding free energy, and binding free energy

decomposition. The approach of Molecular Mechanics/Generalized Born Surface
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Area (MM-GBSA) was used to estimate the binding free energy of a ligand to protein

[164].

Table 4.1 Peptides for molecular dynamic simulation

Sample Peptide Predicted I1Cso (M)
tem AAGIGILTV 2254.35
cl YMNDINCRM 12.4
c2 LLLGLLLFL 16.5
c3 SLPQLTHEV 25.3
c4 ILHHLGQEV 94.4
€5 LLGGTALLL 121.2
c6 SMTVRTTPV 179.2
c7 VMHNYRNLV 234.2
ncl KEERDDDTD 49326.2
nc3 PRVRDNYRD 49203.1

Tem = a peptide from crystal structure (3QEQ); ¢ = candidate peptides from MuPeXI
prediction; nc = non-candidate peptides

4.5 Random peptide data sets

The random peptides generated from the human proteome were assumed to model as
false data points (non-binding peptides) for the study of MHC-peptide binding
predictors. Since 9mers have the highest preference for MHC class | binding groove,
a set of random 9mers peptides was created. The human proteome from UniProt
(www.uniprot.org) database [165] was processed to produce 9mers peptides via a
sliding window approach, different by one amino acid at a time. The total unique
9mers peptides from human proteome is 12 million. The five data sets of random
peptides were generated by random selecting 10,000 peptides per data set from whole

human peptides data set.

4.6 MHC-peptide prediction using NetMHCpan4.1 and MHCflurry
Each random data set was predicted against the 79 alleles of MHC class I, which are

supported in both MHCflurry and NetMHCpan4.1. An input file was prepared from
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each random data set with each HLA allele, and those input files were predicted the
MHC-peptide binding affinity by NetMHCpan4.1 and MHCflurry from a stand-alone
software package by the command line for each specific HLA allele. For
NetMHCpan4.1, the prediction was performed with the default model. With using
MHCflurry, the model of MHCflurry 1.2.0, which has been built by binding affinity
data combined with MS data for model selection, was utilised as the predictor. To
select predicted binding peptides, the fixed thresholds were used to cut off the
predicted results. The NetMHCpan4.1 documentation recommends using the % rank
rather than the 1Cso value, but most studies select the binding peptides based on the
predicted ICsp [3, 102]. Therefore, both values were used to distinguish binder from
non-binder peptides. With using the 1Cso, the threshold value is <500 nM, whereas the
threshold of the % rank is <2%. Finally, there were two sets of the binder result, i.e.
selecting binders with (i) less than 500 nM and (ii) less than 2% rank, per allele per
prediction tool. The number of peptides that passed the criteria were calculated as the

percentage of binders.

4.7 Collection of MHC bound peptides derived from mass spectrometry (MS)
analysis

Data sets of MHC-bound peptides derived from MS analysis were downloaded from
the IEDB (https://www.iedb.org/) [64]. Human peptides identified from MS and
bound to HLA-A, -B, and -C were collected. Other eluted peptides from MHC class |
“mono-allelic cells”, i.e. presented peptides from cells carrying a single HLA allele,
were collected from several publications of immunopeptidomics studies [101, 166-
168]. Peptides for each HLA allele from those sources were combined, and redundant

peptides were removed. Only peptides with lengths of 8, 9, 10, and 11 mers were
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retained. However, the majority of peptide length in the collected data was found as
9mers peptides for all HLA alleles. HLA alleles that had >1000 9mers peptides were
collected for onward analysis, totalling 85 HLA alleles covering HLA-A, -B, and -C.
Additionally, the “multi-allelic data sets™, i.e. a set of peptides presented by cells
carrying several alleles, were obtained from the data set contains naturally presented

HLA class I ligands derived from chronic myeloid leukemia (CML) patients [169].

4.8 Generation of MS-random peptides data sets

To generate the mixture of predicted scores of MS and random peptides, the data set
of true binding peptides were combined with random peptides, where the method of
random peptide generation was described in Section 4.5, in a ratio of 1000 MS to
4000 random peptides. The true binders were sourced from the 85 mono-allelic data
sets containing MS identified data sets where peptides presented by genuine MHC
alleles were presented. The predicted MHC-peptides binding affinity was performed

by NetMHCpan4.1 with a command line using a stand-alone software package.

4.9 Generating the data sets from the statistical models

The simulated data sets of normal and beta distributions were generated by the
random function of those statistical models using packages in Python. For the normal
distribution, the data sets were simulated from the function of
numpy.random.normal(u, o2, size), and the function of numpy.random.beta(a, S,
size) was used to generate the data sets for the beta distribution. The input parameters
for those models were computed from the template data, which are predicted results
of MS-random peptides data sets. The statistical values including u and o2 were

calculated and were taken to calculate beta parameters using Eq. 3.15 and 3.16.
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4.10 Similarity measure

Linear regression was performed between the simulated and the scaled predicted
score distribution. The resulting R-squared (R?) statistics were used to evaluate the
similarity between the two distributions. Since the simulated beta distributions lie the
interval [0, 1], the binding affinity scores (logio ICso) were scaled to the same interval

by diving the predicted scores by the maximum value for each data set.

4.11 The modified EM algorithm with the iterated method of moments for the

beta mixture model

The parameter estimation algorithm for beta mixture was built by a Python script. The
algorithm was proceeded iteratively as in the basis of the EM algorithm. The
algorithm consists of four major steps including initialisation, expectation,
maximisation, and termination. For each iteration, parameters (8) including two
mixture proportions (m;, m,), tWwo means (4, i), and two variance values (o2, 62)
were estimated for two components. However, in this work, the step of parameter
estimation was computed by Pearson’s method of moment instead of the
maximisation of likelihood, thus, the maximisation step (M-step) was replaced by a

method of moments estimation step (MM-step) [149].
Initialisation

As the distribution of predicted scores is a bimodal, thus, two was defined as number
of components. The initial mixture proportion () of each component j was initially

set as 0.5. The initial mean and variance (uj,ajz) were calculated from the data of
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each component, and the initial values of a; and j; were then computed according to

Eq. 3.23 and 3.24.

o 1-”1'_1) 2
a; ( ) (3.23)
1

Expectation (E-step)

The expected responsibility weight (Wi, j) of each component j and data point x; was
estimated from the probability density function of the current estimates for beta
distributions (a/, 8}) and the mixture proportion z; (Eq. 3.25).

e, = U ae)
v Zﬁl”ff(xi;“ft"ﬁ;)

(3.25)

r'(a+p) _ -
,where f(x;a,B) = F(:;Ffﬁ)-x“ 1.(1—x)F1

Method of moments estimation (MM-step)

For each component j, the mixture proportion is updated based on the new values of

responsibility weights W,

according to Eq. 3.26. Then, component’s mean and
variance and the beta distribution parameters are updated using the method of

moments (Eq. 3.27-3.30).

1
7Tt+1j = ; ?21 Wlf:] - (326)
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) (3.30)

t+1 _ t+1
,B~+ _aj+ (Iﬁ
J

J

In this step, the estimated beta parameters for the beta 2 component were further
constrained by the ranges of values calculated from the data sets of various sizes
(10000, 5000, 1000) of predicted binding affinity scores from random peptides with a
length of 8, 9, 10, and 11 mers against 85 HLA alleles. The purpose of this restriction
was to ensure that the beta 2 component of the mixture model is certain to capture the
false data. Moreover, to ensure the beta 1 component is not fitted to the wrong
distribution when presented with all false data, the estimated parameters of the first
component are restricted if the estimated m;= 1 and size of the negative set # 0
(predicted 1Cso > 10000 nM) i.e. indicating that there is only one distribution found,
and there are data points in the plausible range for false data. In this case, the ranges
of a and 8 for the first beta component were initially calculated from data points with
predicted 1Cso < 10000 nM using Eqg. 3.23 and 3.24, and the range of values are only
allowed to deviate 25% from the initial estimates. In practice, these two constraints
mean that when the algorithm detects evidence a very large imbalance, in either
direction (i.e. all true or all false), the beta 1 or beta 2 is correctly fitted to the

appropriate distribution.
Termination

The parameter updates (E-step and MM-step) were repeated until the maximal
absolute changes in parameter values, k', between step t and t + 1 is less than 0.00001

(Eqg. 3.31).

t+1_ t t+1_pt t+1__t
|“j “1| |BJ BJ| |”1 ”1|

k! = max , , L ji=12 3.31
<{max(|a;+1|,|a;.|) ma (181116L1) " max (15 l)” ) }>—( )
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4.12 Testing the EM beta mixture model with the predicted data sets

The resulting peptide set of 85 HLA alleles in Section 4.8 was run through
NetMHCpan4.1 for each the specific HLA allele. The predicted scores of each HLA
allele were used as an input data for the estimator model to estimate beta parameters
of true (MS) and false (random) data distributions. The correctness of estimation was
measured by the relative change between the defined mixture proportions and their
estimated values. The similarity between real and simulated data generated by
estimated parameters was measured by the linear regression analysis yielding R?
statistics. Moreover, Kolmogorov-Smirnov (KS) test was used to detect the difference
between the real and simulated data sets, the significant threshold was set at p-value <
0.05. Moreover, for testing a robustness of the estimator model, a wider range of data
sets with unknown true binding or non-binding peptides were used to test the model,

and the accuracy of FDR and PEP values were observed.

4.13 Calculation of FDR and PEP for predicted scores

The estimated beta parameters were utilised to calculate values of FDR and PEP of an
individual predicted score in the data set using Eq. 3.32 and 3.33, respectively. The
number of false and true positive were estimated by the CDF of the beta distribution

while density at true and false were estimated by the PDF of the beta distribution.

FDR. = Fafalse'ﬁfalse(xi) (3 32)
x. - - .
¢ F“true»ﬁtrue("i)+F‘1’falsg'ﬁfalse(xi)

fa P false Xi
PEP, = falsel false) (3.33)

fatruevﬁtrue(xi)+fafalse:Bfalse(xi)
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4.14 Epitopes and non-epitopes data collection

This aim of this model was to classify immunogenic and non-immunogenic peptides
on MHC class I molecules. These peptides were obtained from ‘tcell full v3.csv’
downloaded from IEDB [134] with the following inclusion criteria: linear epitope,
9mers in length, MHC class I, non-human parent peptides, and any host species
(Table 4.2). In this study, the determination of true neoantigens of human cancer is
emphasised, thus, only non-human parent peptides, as shown in Table 4.2, were
retained for training data to avoid the bias from matching self-proteins obtained from
blasting peptides against to human proteome. Epitope and non-epitope peptides were

labelled as “positive” and “negative”, respectively.
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Table 4.2 Summary of parent species, host species, and experimental assays of 9mers

peptides specific MHC class I collected from IEDB

Positive Negative
(n=2127) (n=5042)

Parent Species

Homo sapiens 430 326
Non-Homo sapiens 1697 4716
Host Name
Homo sapiens 1514 1708
Mus musculus 563 3497
Pan troglodytes 12 12
Sus scrofa 13 7
Equus caballus 5 0
Macaca mulatta 15 139
Gallus gallus 2 14
Rattus norvegicus 2 25
Oryctolagus cuniculus 1 0
Assay group
qualitative binding 589 219
cytotoxicity 386 423
IFN-y release 1058 4704
proliferation 23 35
dissociation constant KD 20 0
granzyme B release 27 1
TNF release 2 3
activation 17 12
pathogen burden after challenge 2 2
T cell help il 0
CCL4/MIP-1b release 2 0
disease exacerbation 0 1
degranulation 0 2

4.15 Generation of data sets with matching binding affinity scores

We first analysed the MHC binding affinity of peptides within the training set, a

priori classified as immunogenic and non-immunogenic. Data sets containing

immunogenic peptides are biased towards containing peptides that are also strong

MHC binders (Figure 4.2, the top panel) i.e. median logio ICso = 1.93 (positive) vs
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2.67 (negative). Given that there are already reliable predictors for MHC-peptide
binding, and statistics developed via MHCVision (covered in Section 5.2), in this
work we aimed to train a peptide immunogenicity model that is statistically
independent of whether a peptide is predicted to be bound by MHC. As such, to
prevent the bias being introduced by features that predict binding and non-binding
properties, the data distributions of predicted MHC-peptide binding affinity between
epitopes and non-epitopes data were divided into 20 bins, and the distribution of both
data sets was standardised for every bin by sub-sampling predicted binding affinity
scores within the same range for both epitopes and non-epitopes data (Figure 4.2, the
bottom panel). The final data for training and testing consisted of 1,146 immunogenic
peptides and 1,356 non-immunogenic peptides, with near identical distributions of
peptide binding affinity, as predicted by NetMHCpan. These peptide sets are biased
towards those with high-binding affinity e.g. ~70% of both sets (71% for positive and
72% for negative) have 1Cso < 500 nM (logio ICso < 2.7), indicative of being strong
binders, but ~30% of the data are relatively weak binders or non-binders. The
rationale for this approach is to learn features that will be useful for determining
immunogenicity, unrelated to peptide affinity and MHC binding, working under the
assumption only peptides will be tested for immunogenicity if they are a reasonable

peptide binding affinity from another tool.
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Figure 4.2 Matching data distributions of predicted MHC-peptide binding affinity of
immunogenic and non-immunogenic peptides. The upper panel shows histogram (left)
and boxplot (right) for log10 IC50 values derived from NetMHCpan for all peptides
in the set. The bottom panel shows the same after sub-sampling from score bins to
match score distributions between the positive and negative training set.

4.16 Construction of physicochemical properties for immunogenicity features

The physicochemical properties were selected based on the properties have been
studied in immunodominant peptides and reported by the previous studies. Those
properties include molecular weight, bulkiness, entropy, hydrophobicity, polarity and
charge, and other properties related to binding interaction e.g. side chain orientation,
bonded energy per residue [113, 142]. The scores of each property for 20 amino acids
were obtained from the AAindex database [170]. The redundant physicochemical

properties in the AAindex database were defined by their strong correlation
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(Pearson’s correlation test) with the absolute correlation coefficient > 0.9. There are in
total 18 selected physicochemical properties, shown in Table 4.3. Each property
consists of ten features, which are nine features from nine residues and one feature
from summation of all residues in a peptide, and two features from similarity features

including BLAST score and mismatched number(s) (Table 4.4).
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Table 4.3 The physicochemical properties obtained from the AAindex database

Physicochemical
property

Index

Description

Entropy

HUTJ700103

Entropy of formation (Hutchens, 1970)

KRIW790102

Fraction of site occupied by water (Krigbaum-Komoriya,
1979)

Hydrophobicity

EISD860102

Atom-based hydrophobic moment (Eisenberg-
McLachlan, 1986)

EISD840101

Consensus normalized hydrophobicity scale (Eisenberg,
1984)

EISD860103

Direction of hydrophobic moment (Eisenberg-
McLachlan, 1986)

GOLD730101

Hydrophabicity factor (Goldsack-Chalifoux, 1973)

BLAS910101

Scaled side chain hydrophobicity values (Black-Mould,
1991)

PRAM900101

Hydrophabicity (Prabhakaran, 1990)

FAUJ880103

Normalized van der Waals volume (Fauchere et al., 1988)

Binding
interaction

O0BM770102

Short and medium range non-bonded energy per atom
(Oobatake-Ooi, 1977)

KRIW710101

Side chain interaction parameter (Krighaum-Rubin, 1971)

O0BM770103

Long range non-bonded energy per atom (Oobatake-Ooi,
1977)

Polarity

Z1MJ680104

Isoelectric point (Zimmerman et al., 1968)

GRART740102

Polarity (Grantham, 1974)

Z1MJ680103

Polarity (Zimmerman et al., 1968)

Size

FASG760101

Molecular weight (Fasman, 1976)

DAWD720101

Size (Dawson, 1972)

CHAMS830103

The number of atoms in the side chain labelled 1+1
(Charton-Charton, 1983)
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4.17 Similarity properties of peptides

“Foreignness” is a crucial factor to trigger the host immune system since only non-
self-peptides can be recognised and stimulate host’s T cells. Therefore, the similarity
between immunogenic peptides and the host’s protecome was created as one of
features for epitope and non-epitope classification. Peptides for training the model
were searched against their host proteome using Basic Local Alignment Search Tool
(BLAST) with a stand-alone version 2.7.1. The optimal searching parameters are
shown in Table 4.5. The best matched peptide was defined by the highest similarity
score with 9mers in length and no gap. The similarity score and number of
mismatches of the best matched peptide were selected as similarity features for the

model.

Table 4.5 Input parameters for BLAST search

Option Parameter Description
program blastp Compare a protein query to a protein database
task name blastp-short Optimized for queries shorter than 30 residues
evalue 1076 Expect value (E) for saving hits
word_size 2 (default) Length of initial exact match
matrix PAM30 (default) | A scoring matrix

4.18 The Random Forest classification model and model evaluation

For creating the Random Forest classification model, RandomForestClassifier from
Scikit-learn packages was implemented in Python 3.7 to build the model from training
data. The Random Forest machine learning package in Scikit-learn provides
automatic iterative selection of optimal parameters; n_estimator = 100, and other
parameters were set as default. The performance of the model was evaluated by the

area under a curve (AUC) of a receiver operating characteristic (ROC) curve. The
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function named roc_curve was used to generate ROC, and the AUC score was
computed by the auc function in Scikit-learn packages. The cross validation was
performed by cross_val_score function with a parameter cv=10. Furthermore, the F1
scores that contributes to a weighted average of the precision and recall was also
reported, where the best value is 1 and the worst value is 0.

precision X recall TP

precision +recall — pp +%(FP +FN)

F1:2X

TP = number of true positives

FP = number of false positives

FN = number of false negatives

4.19 Feature selection

Feature selection is the process of reducing the number of input variables for
predictive model development since fewer input variables can help to reduce the
complexity of the algorithm and make it more understandable. The process of
selection involves evaluating the relationship between each input variable and the
target variable using statistical methods to select those input variables that have the
strong relationship with the target variable. In this work, the feature screening results
were generated in Python 3.7 using the function called SelectFromModel in the
Scikit-learn packages. In this work, the estimator for this function is the
RandomForestClassifier algorithm, and the threshold for feature selection was set as
default, which is the mean of all feature importance values. The feature selection was
performed iteratively, for the first iteration, features whose importance value is
greater than or equal to the mean importance of all features are kept for the next

iteration. Then, selected features from the second iteration were combined to a set
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from the first iteration, these steps were repeatedly performed until the number of
features are less than 30 and the stationary phase is reached (getting the same number

of features > 10 iterations).

4.20 Calibrating predicted probability and constant value estimation

The predicted probability of each class was obtained from predict_proba function. To
calibrate the probability scores produced by the Random Forest model, the logistic
regression function (Eq.3.34) was used to transform pseudo-probability to calibrated

probability.

Given pseudo-score data X = {X1, X2,...xi} and calibrated probability data Y = {y1,
Y2,...Vi}

1
1+e—axl-+b

yi=n+ (3.34)

The constant values including a, b, and n were estimated by curve_fit(sigmoid, X,Y)
function from Scipy packages in Python 3.7. The constant values estimation was

performed from different sizes of testing data (20%, 30%, and 40%).

4.21 Decision tree interpretation

Interpreting the basis for prediction a model is important to check the reliability, i.e.
does the combination of features make sense, and allows decomposing successful
prediction to understand any bias and feature contribution. The feature contribution
result was generated by treeinterpreter, which is a library that computes contribution
values of each feature on prediction for tree-based models of Scikit-learn including

RandomForestClassifier.
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4.22 Software implementation and client software requirement

MHCVision-RF was built by integrating MHCVision and the immunogenicity
prediction model, and the program was implemented using Python version 3.7. The
software is non-graphical user interface and can be run on Unix operating system
using the command line. The following programs and packages in Python are required

for optimal processing.

a.) Python with version 3.7 onward and the following Python packages (Table 4.6)

Table 4.6 Python packages and their versions for client requirement

Package Version
numpy >1.19.1
pandas >1.1.2
scipy >1.52
scikit-learn >0.23.2

b.) Standalone BLAST for Unix (version 2.7.1)

The installation process for Mac OSX, Windows, and Linux can be found in Tao T.,

2008 [171].

4.23 Observation of the relationship between true MHC binding probability and
immunogenicity probability

The relationship between true MHC binding probability and immunogenicity
probability was observed using a data set of 1000 9mers peptides generated from
human proteome. MHC-peptide binding affinity prediction was made by NetMHCpan
4.1 against to HLA-A*02:01, and true MHC binding probability were estimated using

MHCVision. The immunogenicity of each peptide was predicted using the Random
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Forest model described in Section 5.3. The linear regression model was used to

evaluate the correlation between those two probability scores.

4.24 Generation of validating data from published neoantigen data

The data sets of peptides with the experimental validation of T cell reactivity towards
predicted neoantigens from two previous published studies were used to validate the
ranking score produced by MHCVision-RF. In the study from Patrick Ott et al., 2020
[172], candidate neoantigens were selected based on bioinformatic analysis and
MHC-peptide binding predictions, and IFN-y ELISpot assay was used to validate the
immunogenicity of peptides. From this study, peptides with 9-11mers of two
melanoma patients (M1 and M3) and a lung cancer patient (L7) were applied to
MHCVision-RF. Only data from these three patients were selected because their
HLA alleles are reported in Figure S4 of the original paper [172]. The raw data of
peptides from M1, M3, and L7 patients can be found in the supplementary data® in the

original paper of Patrick Ott et al., 2020.

Furthermore, data sets of patients from the study of Yong Fang et al., 2020 [173]
including P001 (Melanoma), PO03 (Adrenal Sebaceous Adenocarcinoma), P004
(Small Cell Lung Cancer), P011 (Ovarian Cancer), and P016 (Non-Small Cell Lung
Cancer) were selected to test the pipeline. The raw data of peptides from P001, PO03,
P004, P011 and P016 patients can be found in the supplementary tables? in the

original paper of Yong Fang et al., 2020. In this study, they reported designed
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peptides for synthesis which are long peptides (25-30 amino acids) and used IFN-y
ELISpot assay to test T cell reactivity of candidate peptides. To imitate the step of
short peptide preparation for neoantigen prediction, those long peptides were cut to
9mers via a sliding window method. A set of 9mers peptides of each patient were then

applied to MHCVision-RF
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CHAPTER S

RESULTS

5.1 The study of neoantigen prediction using existing bioinformatics software
and public MHC-peptide binding affinity prediction tools

There are several neoantigen identification pipelines that have been launched in recent
years as shown in the Table 3.2. Those tools perform neoantigen identification based
on genomic sequencing data and MHC-peptide prediction. Those existing automated
workflows generally requires a VCF file, list of MHC alleles and a table of gene
expression levels as inputs. A list of mutated peptides of multiple lengths are usually
generated via customised code of those existing tools prior to taking those peptides
and MHC types to the MHC-peptide binding prediction tool. Most current workflows
launched from 2017 onward have an amended prioritisation model to return a ranking
score for each peptide that is useful for selecting candidate neoantigens for
downstream experiments. In this section, the identification of neoantigens from WES
and/or RNA sequencing data from colon cancer patients was performed using existing
bioinformatic tools and a neoepitope prediction workflow called MuPeXI [112] to
demonstrate the proof of concept and test the tools. Beyond the sequence analysis, a
structural based analysis was also demonstrated to explore the quality of the
predictions; peptides with high predicted binding affinity from the MuPeXI prediction
were selected for the energetic analysis based on the structure model of MHC-

peptides using the molecular dynamics (MD) simulation technique.
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In summary, the aims of this section are to demonstrate the practicability of
approaches for neoantigen prediction using both sequence analysis with a publicly
available pipeline and a structural based analysis. This section also explores the rate
of false positive answers from MHC-peptide binding predictors i.e. NetMHCpan4.1

and MHCflurry, as a potential source of error in the analysis.

5.1.1 The neoantigen identification-based sequence analysis using the publicly
available tools

Variant calling analysis from matched tumour and normal WES data showed different
number of somatic mutations among different patients. The number of non-
synonymous somatic mutations across nine colorectal cancer patients ranged between
10 to 400 mutations indicating that even amongst the same type of cancer, the
diversity of genetic mutation is individualised. Most mutations come from missense
mutations which alter only one amino acid whereas the small insertions/deletions or
frameshift mutations rarely occurred (Table 5.1). The alleles of HLA class | including
A, B, and C loci of an individual patient were identified from normal WES data using
the HLA genotype algorithm as described in Section 4.2. Each patient has at least
three different alleles for A, B, and C loci and a maximum of six different alleles; two
alleles per locus (Table 5.2). Among nine samples, the highest frequency HLA class |
alleles for A, B, and C loci are A*33:03, B*40:01, B*46:01, and C*01:02 respectively

(Figure 5.1).
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Figure 5.1 The frequency of HLA class I alleles from nine colorectal cancer patients

A variant file and list of HLA alleles of each patient were taken as inputs to MuPeXI.
For only Samples 6 and 8 were RNA expression level available. The program
returned the results table including predicted 1Cso from mutated peptides and their
normal counterparts, variant information, RNA expression level in TPM, and ranking
score calculated from the built-in model in MuPeXI software. However, seven of nine
samples do not have RNA sequencing data. As discussed above, a predicted binding
affinity score alone is not sufficient for making a shortlist of candidate neoantigens.
Therefore, the prioritisation criteria described in Section 4.3 was used to filter and
select candidate neoantigens on the basis of capability of MHC binding and the
immunogenicity potential characterised by similarity between mutated peptides and
their self-counterparts. It was found that the number of candidate neoantigens that
pass filtered criteria vary across different patients (Table 5.3). It can also be observed
that transcriptomic data can help to reduce numbers of predicted neoantigens by
excluding non-expressed peptides and create a shortlist of candidate peptides, for
example, Sample 3 and Sample 6 have similar number of mutations, but a ratio
between number of candidates to the number of total mutations of Sample 3 is twice

that from Sample 6. Moreover, the result showed that the number of candidate
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neoantigens seem to be approximately proportional with the number of non-
synonymous somatic mutations. The linear relationship between number of mutations
against number of candidate neoantigens displayed a good correlation (R? = 0.978),
although this correlation analysis did not include data of Sample 6 and 8 because the
criteria of candidate neoantigen selection for those data have a step of filtering by
gene expression level but other samples do not have RNA sequencing data (Figure
5.2). Thus, the number of candidate neoantigens that selected from different criteria
could not be compared.  Next, shared mutated genes across nine patients were
explored, among those samples, the mutated genes that were found in more than one
sample were selected. There were 12 mutated genes that were shared by two or more
samples. Two of them were TP53 and APC which are well known cancer driver genes
in colorectal cancer [174], and mutations of TP53 were found in 4 of 9 cases with
different mutations sites. Only APC and ZNF808 shared the same mutated residues in
two samples which are frameshift mutation of APC in Sample 4 and 7 and point
mutation of ZNF808 in Sample 6 and 7 (Table 5.4). Finding common mutated
peptides across different patients might have good potential for developing a
“warehouse vaccine”, suitable for many patients, although we do not see much

evidence for this potential in our data.
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Figure 5.2 The scatter plot between number of non-synonymous mutations and

predicted candidate neoantigens. The linear regression model was fit to those data
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selection from data with and without RNA sequencing data are different.
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Table 5.1 Number of non-synonymous somatic mutation of nine colorectal cancer

patients
Missense . . Frameshift Total
Sample . Insertion/Deletion . .
Mutation mutation mutations
1 330 11 16 357
2 12 1 4 17
3 327 7 11 345
4 210 1 16 227
5 236 10 15 261
6 304 12 7 323
7 327 43 35 405
8 38 2 0 40
9 40 2 0 42

Table 5.2 HLA class I alleles of nine colorectal cancer patients

Sample| HLA-A HLA-B HLA-C
HLA-A02:07 | HLA-B46:01 | HLA-C01:02
1 HLA-A02:07 | HLA-B40:02 | HLA-C03:04
HLA-A33:03 | HLA-B46:01 [ HLA-C01:02
2 HLA-A33:03 | HLA-B07:02 | HLA-C07:02
HLA-A24:02 | HLA-B44:03 | HLA-CO07:06
3 HLA-A33:03 | HLA-B15:25 | HLA-C04:03
HLA-A11:01 | HLA-B46:01 | HLA-C01:02
4 HLA-A29:01 | HLA-B35:01 | HLA-C04:01
HLA-A33:03 | HLA-B40:01 | HLA-C03:04
5 HLA-A24:02 | HLA-B40:01 | HLA-C07:02
HLA-A33:03 | HLA-B58:01 | HLA-C03:02
6 HLA-A02:01 | HLA-B15:13 | HLA-C08:01
HLA-A33:03 | HLA-B40:01 [ HLA-C03:04
7 HLA-A24:02 | HLA-B58:01 | HLA-C03:02
HLA-A33:03 | HLA-B40:01 | HLA-C03:02
8 HLA-A24:02 | HLA-B58:02 | HLA-C07:02
HLA-A33:03 | HLA-B46:01 | HLA-C01:02
9 HLA-A02:07 | HLA-B44:03 | HLA-C07:06
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Table 5.3 The number of candidate neoantigens of nine colorectal cancer patients

. A ratio of
Sample | Total mutations ncégggt'%aetﬁs candidates_to zyf“g&t:
total mutation
1 357 53 0.15 No
2 17 5 0.29 No
3 345 64 0.19 No
4 227 48 0.21 No
5 261 41 0.16 No
6 323 29 0.09 Yes
7 405 85 0.21 No
8 40 4 0.10 Yes
9 42 8 0.19 No

Table 5.4 Shared mutated genes among nine cancer patients

Sample
Gene Cancer 1 2 3 4 5 6 7 8
Driver Gene

TP53 yes R174H C275F L130R A161T
TTN no R33134C C213764R
AFF2 no 11023M L1034l
IFT122 no A662E E655del
PCDHAS8 no R498Q K124R
KDMA4E no R100H Q42R
PTGFR no V106A R133W
OBSCN no Y3606H A3300V
SLITRK5 no V678L G59D
ADCY10 no K900N A1131T
APC yes E1554fm E1554fm
ZNF808 no R47AT R474T

del = deletion, in = insertion, fm = frameshift mutation

5.1.2 The analysis of MHC-peptide binding based on structure analysis

The approach of MD simulation can assess the binding energy and other

physicochemical properties between protein structures and ligands. In this study, this

technique is applied to investigate the binding strength of MHC molecules and their

ligands. A set of predicted candidate neoantigens presented by HLA-A*02:01 from a

sequence analysis were selected to perform MD simulation. The binding energy was

computed from MD analysis aiming to validate the predicted 1Cso from MHC-peptide

predictor in MuPeXI. There were ten complexes of HLA-A*02:01/peptide as shown
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in the Table 4.1. The MD simulation of the prepared ten system models was
performed as following the protocol described in Section 4.4. Root-mean-square
displacement (RMSD) calculation was performed to monitor conformational stability
during the MD simulation. The backbone RMSD of candidate peptides are similar to
the structure of the template from PDB (~1 A) and reach equilibrium around the last
10 ns whereas the RMSD of negative control (non-candidate peptides) reached ~4 A
indicating that the stability of binding structure between MHC and non-candidate
peptides is not as good as for those candidates (Figure 5.3). To calculate binding free
energy of the MHC-peptide complex, snapshots from the production phase i.e. MD
trajectories from the last 10 ns, were captured to estimate the binding free energy
using the MM-GBSA technique. In MM-GBSA, the binding free energy is evaluated
as a sum of a conformation energy terms in the MM part (AEmwm), @ solvation free
energy term (AGsol) that is computed using electrostatic field, and the entropy terms at

a constant temperature (-TAS) (Eq.1.1).

AGping—psa = AEyy + AGsoy + (=TAS) ___ (1.1)

In the MM part, a conformation energy is a summation of the electrostatic interaction
energy (AEeie) and the van der Waals (AEvaw) interaction between a ligand and its
surroundings. In the GBSA part, the solvation energy is contributed by a summation
of polar (AGsol-ele) and non-polar (AGsol-np) €nergy terms. The energy components are
shown in Table 5.5. The total binding free energy between HLA-A*02:01 and
candidates 1, 6, and 7 are similar to the energy of a peptide obtained from a
crystallisation of a complex of HLA-peptide (tem), indicated by red boxes, suggesting

that the complexes of candidates 1, 6, and 7 HLA-A*02:01 molecule have a potential
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for a favourable protein-ligand interactions. However, candidates 2, 3, 4, and 5
displayed binding free energies similar to the negative controls and higher than the

template suggesting that they might have a poor interaction with HLA-A*02:01
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Figure 5.3 Root mean square deviation (RMSD) of HLA-A*02:01 and peptide
complexes of 100 ns simulation. The dashed line marks 90 ns. Tem = template from
crystal structure (3QEQ); ¢ = candidate peptides from MuPeXI prediction; nc = non-

candidate peptides.
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Table 5.5 The binding free energy and energy components (kcal/mol) for the ten
complexes of HLA-A*02:01/Peptide.

Template Candidate 1 Candidate 2  Candidate 3  Candidate4  Candidate 5 Candidate 6  Candidate 7
MM
AE e -286.30+1.43 -329.98+2.05 -70.9446.19 131.71+4.89 -62.78+12.22 -121.96+7.21 -257.14+5.83 -318.78+1.40
AE qw -76.34+0.31 -92.5010.32 -18.33+2.09 -2.4110.84 -34.64+2.69 -37.27+2.35 -66.56£1.75 -91.58+0.31
AEym -362.6411.43 -422.88+1.99 -89.2718.27 129.3145.72 -97.42+14.88 -159.23+9.526  -323.70+7.51 -410.36£1.35
GBSA
Angl—np 303.01+1.19 358.90+1.75 76.2246.79 -128.4045.14 75.07+13.02 134.62+7.98 282.60+6.46 350.4641.22
AGgo1—cte -12.10+0.03 -14.5£0.03 -2.8810.323 -0.3310.12 -5.24+0.41 -5.79+0.36 -10.65+0.28 -13.43+0.02
AG g 290.91+1.18 344.32+¢1.731 73.3416.456 -128.7345.02 65.83+12.62 128.83+7.62 271.95+6.19 337.03£1.22
AGyorai—grsa 71744040 -7856+0.40  -15.93+182  0.58+0.71 27584227  -30.41#1.93  -51.75+1.38  -73.33+0.39
—TAS -45.47 -54.26 -8.61 -62.82 4794.40 -15.36 -53.59 -52.65
AGying_cpsa  -117.20 -24.54 62.24 4266.81 -45.76 [-105.34] |-125.97
Non-candidate 1 ~ Non-candidate 2

MM
AE,, -321.16+13.97 -371.17+6.99
AE ,qw -49.84+1.91 -36.99+0.77
AEyy -370.99+15.82 -408.1616.30
GBSA
AGso1—np 352.56+15.08 380.55+6.44
AGso1—cie -8.2240.31 6.000.12

G0l 344.34+14.77 374.5646.56
AGpra1-grsa  -26.65+1.09 -33.6120.49
—TAS -46.66 -34.68
AGpind—cpsa 7331 -68.29

Furthermore, the relative binding affinity of HLA-A*02:01 and each peptide was
examined by per-residue energy decomposition using an implicit solvent model. The
total binding free energy excluding the entropic contribution was plotted per-residue
to illustrate the peptide-HLA binding pattern. The binding free energy of an
individual amino acid within the core 9mers was compared at identical position
among all ten peptides. The residues at position 2 and the C-terminus in a peptide are
anchor residues that contribute binding interactions to HLA-A*02:01 binding groove.
The result showed amino acids at the p2, p8, and p9 positions have lower binding
energy than other position, and the candidates 1, 6, and 7 have lower binding energy
at those positions compared to other candidates and negative controls (Figure 5.4A).
A structural superimposition over all complexes taken from the last MD snapshot was

performed. Examination of the side chain directions of the residues at p2 and p9
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positions shows that the side chains of template and candidate 1, 6, and 7 were
orientated towards the binding cleft of HLA-A*02:01. In contrast, the direction of
non-candidates was out of the groove of HLA molecule (Figure 5.4B). The binding
energy results agrees with the predicted binding affinity from a sequence analysis for
only three from seven peptides suggesting that those three candidate neoantigens are
more convincing as true neoantigens than the other four peptides. However, MD
simulation is a technique that analyses the physical movement of atoms and molecules
in a simulated circumstance for a fixed period of time as trajectories can go in
different directions from the same starting point. Hence, the binding free energy might
not fully represent the genuine interactions of macromolecules in the real biological

scenario.

Per-residue binding free energy (kcal/mol)

T T T T T T T T
pt p2 p3 p4 p5 p6 p7 p8 p9
Peptide residue

Figure 5.4 Per-residue free energy decomposition values of HLA-A*02:01/peptide
complexes. (A) The binding free energy per residue of 9mers peptides. (B) The
superimposition of candidate peptides and negative peptides in HLA-A*02:01 binding
pocket. Tem = template from crystal structure (3QEQ); ¢ = candidate peptides from

MuPeXI prediction; nc = non-candidate peptides.
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Besides the analysis of binding strength, a structural analysis can also provide a
visualisation of the binding structure of a protein and ligand. The last MD snapshots
of candidatesl, 6, and 7 are shown in Figure 5.5. The structure models showed that
the side chains of mutated residues in candidates 1 and 7 are oriented towards the
solvent interface (indicated by the red boxes) whereas the side chain of the mutated
residue of candidate 6 is buried in the binding cleft suggesting that mutated peptides
of candidate 1 and 7 probably have good potential to be recognised by T cell
receptors: the orientation of side chains of mutated residues towards the surface might
makes a peptide to be more prominently recognisable as non-self, which is promising
for T cell recognition. While it is not straightforward to scale up MD simulation to
high-throughput data, these results suggest that MD can play a role in suggesting
improved peptide candidates for vaccine development. Therefore, the following
analyses in this study focus on the methods of prediction of MHC-peptide binding

affinity for solving neoantigen identification tasks.

Candidate 1 Candidate 6

YMNDINCRM SMTVRTTPV VMHENYRNL

Figure 5.5 The orientation of side chain of the mutated amino acids for three selected

candidates.
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5.1.3 Analysis of the predicted scores with existing MHC class I-peptide binding
prediction tools

From the analysis above, the prediction of binding affinity between MHC and peptide
sequences is the most feasible in clinical practice and suitable for dealing with high
throughput data such as genomic or transcriptomic sequencing data. The binding
peptides are commonly determined by predicted ICso < 500 nM or predicted rank
score < 2%. From the analysis in the Section 5.1.1, the predicted binding affinity and
gene expression level are the main contributing variables for candidate neoantigen
selection. Nevertheless, binding affinity predictions still may carry a high risk for
getting false positives especially in HLA alleles lacking training data for prediction
tools. As such, we analysed the false positive rate for different HLA alleles to further
understand this phenomenon. The overlaying of predicted ICso of candidates from
Sample 6 and random peptides (predicted against same set of HLA alleles of Sample
6), was created to explore the distribution of predicted MHC binding affinity of
putative candidate neoantigens and random peptides. The result displayed some
overlapping between the scores from candidate neoantigens and from random
peptides indicating imperfect separation of true and random binders (Figure 5.6). In
this section, the prediction behaviour of NetMHCpan and MHCflurry for random
peptides against various HLA alleles was studied to explore the prediction of random
background and estimate false positive rate from random peptides for different types

of HLA alleles.
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Figure 5.6 The overlaid distribution of predicted binding affinity scores (logio 1Cso)
from candidate neoantigens of Sample 6 and random peptides. Those peptides were
predicted against HLA alleles carried by Sample 6 using NetMHCpan4.1.

5.1.3.1 The analysis of random background

A set of 9mers random peptides was used as input for NetMHCpan4.1 and MHCflurry
for predicting against different 79 HLA alleles, which are supported by MHCflurry
and NetMHCpan. Those predictors are commonly used in several neoantigen
identification workflows, and their performance are comparable [65]. The thresholds
of 500 nM and 2% rank score were used to characterise “binding” peptides i.e.
expected true positive binders. For each allele, the binding peptides were counted and
calculated to the percent binder of a random set. The results showed that different
MHC molecules have different number of random binders cut off by a fix threshold in
both prediction tools (Figure 5.7). Among those alleles, the percent random binder of
NetMHCpan4.1 using predicted 1Cso (<500 nM) as a threshold ranged from 0.01% to
7.32%, while using the predicted % rank score < 2% as a threshold, the percent
random binder ranged from 1.88% to 6.29%. For MHCflurry prediction, the percent
random binder selected by ICso < 500 nM ranged from 0.01% to 7.12%. With using

the rank score < 2% with MHCflurry predicted results, the percent random binder
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ranged from 0.97% to 15.65%. This result can imply different binding preferences for
different MHC molecules. However, given that NetMHCpan4.1 documentation
suggests using the predicted % rank score to select binders rather than the 1Csg, the
counts of random binders among different alleles still vary considerably at this

threshold.

= NetMHCpan 4.1
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Figure 5.7 The percent random binder of specific alleles. The upper panel is the
binders those were selected by the ICso less than 500 nM. The lower panel is the
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5.1.3.2 Determination of predicted binding affinity at the top 1%

A method to find the value for both predicted ICso and predicted % rank score,
corresponding to an approximate top 1% of ranked scores was next applied. The
predicted ICso of each HLA allele were ranked from low to high. The value at 100"
ranked position out of 10,000 for each allele was selected as the threshold, that value
was denoted as 1% false positive rate (FPR) threshold per allele. It should be noted
that peptides that pass 1% threshold might not genuinely false binding peptides, but
we use the term FPR to imply the proportion of random peptides passing a given
threshold, which could be non-binders or “random” real binders. The predicted ICso at

the top 1% FPR from prediction using NetMHCpan4.1 and MHCflurry displayed high
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variation across 79 HLA alleles, and most of them are not close to 500 nM, marked as
the red line (Figure 5.8). For NetMHCpan4.1, the predicted ICso giving the 1% FPR
threshold ranges from 7 nM (A*02:11) to 9,795 nM (B*08:02). With MHCflurry, the
predicted 1Cso giving the 1% FPR threshold ranges from 12 nM (A*02:03) to 11,248
nM (B*27:02). Moreover, within a set of alleles in the same HLA supertype, which
have the same preference of amino acids at the anchor positions, also exhibited great
variability in the predicted 1Cso giving the 1% FPR threshold, such as the superfamily
of HLA-A*2. Those results above indicate that different HLA alleles have different
predicted binding affinity scores even though they are likely to bind to same (or
highly similar) peptides. As the input was the same set of random peptides, the results
certainly showed that different alleles can bind the peptides at 1% FPR either lower or
higher than 500 nM. If a single fixed threshold is used for any allele, results from
some alleles will contain more false positives, while some sets will lose true positives.
Therefore, each specific HLA allele should have their own threshold that would allow

the same FPR. This topic is the focus of Section 5.2.

* NetMHCpand.1 = MHCflurry

Figure 5.8 The predicted ICso corresponding to 1% FPR across 79 HLA alleles. The
predicted binding affinity scores were obtained from the prediction between random
peptides against to 79 HLA alleles using NetMHCpan4.1 and MHCflurry. The red
line marked at the value of log10(500 nM).
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5.2 The development of a model to estimate statistical properties from MHC-
peptide binding affinity prediction

In Section 5.1, we demonstrated that through the use of random peptides, one can
estimate a concept similar to FPR i.e. the proportion of false observations passing a
given threshold, from MHC-peptide binding results. Such a statistic could be
somewhat useful for selecting peptides for onward analysis, and removing allele-
specific differences in the proportion of random peptides that pass an ad hoc score
threshold e.g. <500 nM affinity. In fact, it is arguable whether the proportion of
random peptides passing a given threshold is an accurate FPR, since it might cover
both genuinely false positives i.e. peptides that will not be bound by the given MHC
molecule, as well as random true binders. Nevertheless, for most uses of peptide
binding prediction results, more useful concepts relate to the local or global False
Discovery Rate (FDR) than the FPR. The local FDR, the posterior error probability
(PEP) associated with each predicted value, which describes the actual probability
that a given peptide will not bind to a given MHC molecule (and 1-PEP gives us the
probability that it will bind). Moreover, the global FDR is widely used as a standard
threshold in other scientific disciplines using large data sets, for deciding how to
apply a threshold that present a good balance between sensitivity (proportion of true
positives from all true) and reporting false observations. To estimate local or global
FDR perfectly, one would need to know which data points are genuinely true and
false (real or not real binders), which in practice will never be the case (since this is
what we wish to predict). A typical approach to calculate PEP (and the converse is the
true probability of prediction, 1-PEP) and global FDR, is commonly performed via

fitting two distributions to the assumed true and false distribution of scores and
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estimating the relative density at a given data point for PEP values, whilst the FDR
can be estimated by the relative ratio of accumulated numbers of true and false at a

given data point (Figure 5.9).

In this section, the data distribution of predicted scores of MHC-peptide binding
affinity was studied, and the model for parameter estimation was investigated to
finding the best estimated parameters generating distributions of predicted data sets,
which are further utilised for estimating FDR and PEP values. To estimate the true
and false results, the parameters of data distribution are needed to estimate. Section
5.2.2 demonstrated the framework of the EM algorithm with using the method of
moments for beta mixture parameter estimation. The estimated parameters were used
to calculate FDR and PEP by a cumulative density function (CDF) and a probability

density function (PDF) of beta distribution as shown in Section 5.2.3.
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Figure 5.9 The calculation of PEP and FDR from true and false results.
5.2.1 The study of the statistical model fitting predicted data distributions

5.2.1.1 Data distribution of MHC-peptide binding predicted scores

The data distribution of the predicted binding affinity scores were represented by the
predicted data set from the MS peptides from mono-allelic cells and multi-allelic
cells. Data sets of MS peptides from multi-allelic cells were collected from a CML
patient who has six alleles of HLA class | including A*03:01, A*68:01, B*07:02,
B*44:02, C*07:01, and C*07:02. To compare with data from mono-allelic cells, the
same six HLA alleles of MS peptides from mono-allelic cells were selected for
representation. The MS peptides from multi- and mono- allelic cells were mixed with
the same set of random peptides. MHC-peptide binding affinity values for their

specific HLA alleles were then predicted using NetMHCpan4.1. The histogram plots
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were created from the predicted scores to display the data distribution of peptides
identified by MS experiments from mono-allelic cells, multi-allelic cells, and random
peptides (Figure 5.10). The distribution shape of the scores for MS peptide binding
from mono-allelic cells was almost exclusively a single peak on the left side (logio
(ICs0) values < 3 or 3.5 depending on the allele). The overlay of random peptides,
which are believed reasonably well model non-binders (or negative results),
demonstrated a peak on the right side. Since peptides identified by MS data from
mono-allelic cells are highly likely to be genuine binding peptides for a given specific
HLA allele, it could imply that the peak on the left with low ICso values is the
distribution of binding peptides (positives), whilst the right peak (high ICso values) is
the distribution of the non-binding peptides (negatives). The distribution shape of
A*03:01, A*68:01, and B*07:01 from multi-allelic cells displayed a bimodal
distribution, there are two separated peaks that one located on the left (lower logio
(ICso) values, higher binding affinity) and the other on the right side (higher logio
(ICs0) values, lower binding affinity). This result is expected, since only some of the
presented peptides in multi-allelic cell lines are presented by one allele. However, the
left peak of B*44:02, C*07:01, and C*07:02 can hardly be observed, most predicted
scores located on the side of low binding affinity. This might be cause from biological
artifact of different expression level of HLA alleles in a representative sample. The
distribution shape of the right-hand peak (low binding affinity peptides) from multi-
allelic cells well matches the distribution shape of random peptides, indicating that
random peptides also well model peptides not presented by a given HLA allele. The
distribution of predicted scores from MS peptides from monoallelic cells mixed with

random peptides of 85 HLA alleles were shown in Figure 5.11.
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Figure 5.10 The distribution of predicted binding affinity data obtained from MS and
random peptides. The distribution of predicted binding affinity of the MS peptides
from mono-allelic cells (top) and from multi-allelic cells (bottom) and those MS data

sets mixed with random peptides.

5.2.1.2 The mixture of models fitting a bimodal data distribution

From the inspection of predicted binding score distribution in Figure 5.11 the model
fitting data distribution was performed. The distribution of MS peptides can fit to beta
or Gaussian distributions (represented by HLA-A*0201) were shown in Figure 5.12.
The distribution of positive results is generally symmetrical in shape, with an
approximate bell shape, which can be well modelled by Gaussian or beta. The
negative distribution is not symmetrical, since it has a hard stop at about 4.69
(log10(50000)) that is the maximum value that the predictor can provide, which cannot
be well modelled by a Gaussian distribution. The scatter plots of correlation
coefficient values from MS data sets and random data sets of 85 HLA alleles were
plotted across all possible combinations of the statistical models for MS and random
data sets including mixture of Gaussian-Gaussian (GG), mixture of Gaussian-beta
(GB), mixture of beta-Gaussian (BG), mixture of beta-beta (BB). The scatter plots
demonstrated that the mixtures of GB and BB have R? and slope in range of 0.9 to 1,

for most alleles, and the intercept from the mixtures of GB and BB were closer to 0
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than the mixtures of GG and BG (Figure 5.13A). It suggested that the true data
distribution (left peak) can properly fit both Gaussian and beta models while the beta
distribution is the fittest model for false data distribution (right peak). To find
statistical models that can properly model the observed bimodal distributions, the
values of R? from beta and Gaussian model fitting of each HLA allele were compared
by a pair t-test. The average R? from data sets of 85 HLA alleles from the beta model
fitting true data distribution (0.95) was significantly higher than the Gaussian model
(0.93) (p-value = 1.77E-0.7) (Figure 5.13B). Therefore, these results can indicate that
the beta mixture is the most suitable model to fit the predicted scores of data
containing a mixture of binding and non-binding peptides, as would be expected to be

observed in practice.
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Figure 5.11 Data distribution of the predicted scores (binding affinity in logio (ICso))
of MS and random peptides of 85 HLA alleles.
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Figure 5.13 The mixture models fitting data distributions of 85 HLA alleles. (A) The
scatter plots of correlation coefficient R?, slope and intercept values from MS data
sets (x axis) and random (y axis) data sets of 85 HLA alleles that were fitted by beta
or Gaussian models; mixture of Gaussian-Gaussian (GG), mixture of Gaussian-beta
(GB), mixture of beta-Gaussian (BG), mixture of beta-beta (BB). (B) The average of
R? of Gaussian and beta model fitting MS and random data sets from 85 HLA alleles.
Each bar represented the mean of R? from 85 HLA alleles. (**p-value < 0.01);
Gaussian fitting MS data (G_MS), beta fitting MS data (B_MS), Gaussian fitting
random data (G_random), beta fitting random data (B_random).

5.2.2 The development of parameter estimating model using the EM algorithm

5.2.2.1 Parameter estimation using the EM for beta mixture model

The true and false distributions were estimated by the beta parameters estimation
model with the framework of the EM algorithm as described in Section 4.11. To
observe the feasibility of the EM model, the predicted binding affinity scores of the
mixture of 1000 MS and 4000 random peptides from 85 HLA alleles were then

estimated. The overall distribution of the observed data in Figure 5.11 is captured well
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by a two-component beta mixture model, with the first component representing low
ICso values (true data) and the second component for high ICso values (false data). To
estimate the sizes of true and false data from the predicted results, the parameters of
beta mixture distribution including two mixture proportions (7irye, Mraise)
Atryer Araiser ANA Brrye, Braise Were estimated from the predicted data sets for 85
HLA alleles using the EM algorithm with a method of moments estimation for the
beta mixtures. As the data sets are scores of MHC-peptide binding affinity prediction,
the real parameter shapes of a and S of the data were not exactly known, but the ratio
of MS and random size was defined as 0.2 and 0.8, respectively. Therefore, the
relative change between real and estimated values were computed to evaluate the
correctness of estimated parameters. The bar graph of relative change values
demonstrated very low relative changes for almost data sets, though, some HLA
alleles data showed a high difference (a relative change > 0.5) between real and
estimated values, which are found in a few alleles in B locus e.g. B*13:01, B*14:02
and most in HLA-C e.g. C*04:01, C*07:02, C*12:02 (Figure 5.14). Taken together,
the analysis from invented data sets and predicted scores from 85 HLA alleles
indicated that feasibility of the current version of the EM for beta mixture model

might not generally robust for any beta mixture distributions.
5.2.2.2 The EM model with constraining of false parameters

To improve the performance of the EM model to give more sensible estimation, it is
considered that the estimate numbers of parameter shapes should be reasonable for
data distribution of a specific allele. Since the second component of the data

distribution is a set of scores of non-binding peptides, the distribution shape of any
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predicted scores of non-binding peptides with the same HLA allele should be similar.
Therefore, the estimated beta parameters for the second component were then
constrained by the range of values calculated from the data sets of various sizes
(1000, 5000, and 10000) of predicted binding affinity scores from random peptides
with a length of 8, 9, 10, and 11 mers against 85 HLA alleles. The purpose of this
restriction is to ensure that one component of the beta mixture model is certainly
captured as the false data. It should be noted that since some random peptides may be
true binders, random peptides with ICso < 1000 nM (~2.5% of all generated random
peptides on average) were exclude from consideration (Figure 5.15). The values of

Afaise AN g5 from different data sets of each HLA allele were explored to test for

a variation of beta model parameter ranges dependent on data set sizes and peptide
lengths. The calculated values of @ and g from random data sets have a small
variation across different data sizes for most HLA alleles (Figure 5.16), from which it
can be inferred that the calculated values of a and 8 can be utilisied to apply to any
false data sets for the same specific HLA allele. The ranges of calculated values of
Afqise ANd PBrq1se Were used to constrain the estimated asqise and Brgise in the MM-
step The data sets of predicted scores from 1000 MS and 4000 random peptides with
9mers for 85 HLA alleles (same data sets in Section 5.2.2.1) were used to test the
feasibility of the modified EM model. The relative change of real and estimated
values from the non-constrained model was compared to the constrained model. The
relative changes of several HLA alleles, especially data sets in HLA-C were
dramatically reduced with using the constrained model (Figure 5.17) indicating that
restriction of estimated values for false data in the sensible ranges can improve the

performance of the EM model. The R? between the real and simulated data set for all
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85 alleles are greater than 0.99 (Figure 5.18A). However, the R? can only describe a
similarity of distribution shape but not scaling between two data sets. To ensure that
simulated data can represent a given observed data, we also considered other values in
the linear equation including the slope and intercept, and they are also close to 1 and
0, respectively (Figure 5.18B and 5.18C). Furthermore, the difference between two
distributions of real and simulated data for 85 HLA alleles was tested by the KS
analysis. The p-values from KS test are higher than 0.05 for almost all alleles
indicating that distributions of real and simulated data are not significantly different,
although there are few alleles that have p-value less than 0.05, which are A*01:01,
C*04:01, and C*07:01 (Figure 5.18D). The overlaying of data distributions of each
HLA allele between the predicted scores and simulated data set were shown in the
Figure 5.19. In most HLA alleles, the distribution of real and simulated data for both
the left and right peak showed a good alignment (81 of 85 alleles, R> > 0.995).
However, there are four data sets, that have right skew distribution of MS data
including B*14:02, C*04:01, C*06:02, and C*07:02, displayed less good alignment
between real MS data and their simulated data (those alleles have R? < 0.995).
Nevertheless, the distribution of false data was well captured by the simulated data
indicating that the ratio of false positive to true positive in that area of the MS data

should be still correct.
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5.2.2.3 Beta parameter estimation for massive imbalance data

To test the robustness of the estimator model with a large imbalance in true and false
data, the final implementation of the estimator model was not only constrained with
estimated parameters of the beta 2 component, but also restricted estimated
parameters of the beta 1 component. However, the estimated beta parameters of true
data are only restricted if the estimated m;= 1 and size of the negative set # 0
(predicted 1Cso > 10000 nM) i.e. indicating that there is only one distribution found,
and there are data points in the plausible range for false data. In this case, the ranges
of a and B for the first beta component were initially calculated from data points with
predicted 1Cso < 10000 nM using Eqg. 3.23 and 3.24, and the range of values are only
allowed to deviate 25% from the initial estimates. In this analysis, the parameter
estimation analysis was also performed with data sets with a larger imbalance ratio
containing 1000 MS peptides and 8000 random peptides, and the result showed that
the similarity between real and simulated data sets for 85 HLA alleles are close to 1
(R? > 0.995), and they are similar to those from 4000 random peptide (Figure 5.20).
Furthermore, highly imbalanced distributions (i.e. almost all true, or almost all false),
where selected MS data sets and random data sets were used to test with the model
separately (Figure 5.21) and the predicted ICso of peptides derived from MHC | multi-
allelic cells (Figure 5.22). The result of similarity measure from those data sets
revealed a high similarity between the real and simulated data indicating that the
model can work well with data sets that are not in our sets of data used to learn and
train the model and provide sensible estimated parameters for data distributions with a

large imbalance between true and false data.
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5.2.2.4 Beta parameter estimation for multi-lengths peptides

Since the common lengths of peptides for MHC class | are 8 to 11 mers, hence, the
mixture of MS and random data sets with different peptide lengths were generated for
more thoroughly testing the performance of the constrained EM model. There are 16
HLA alleles, with MS peptides available for all lengths (8, 9, 10, and 11 mers), which
were used to test the estimation performance of the model, 800 MS peptides (200 per
length) and 3,200 random peptides (800 per length). It was found that the R? values of
the real and simulated data sets for 16 HLA alleles are highly close to 1 (Figure
5.23A). The value of R? suggested that the parameter estimation model functions well
for the data sets with multi-lengths of peptides, which are shown by a good alignment
between the real and simulated data sets created by the estimated parameters (Figure
5.23B). Altogether, the results of the R? values and the overlaying of data
distributions indicated that the framework of EM algorithm with a modified MM step
for constraining estimated parameters can provide the sensible estimated parameters
that can be further used for generating a data set for resembling the real predicted data
set. The estimated true and false data of the predicted results can be further used to

calculate the values of FDR and PEP for an individual predicted score.

random = 4000 = random = 8000

8
—————
—_—
—_—

03—
04—
040] J—

0501 J—

Figure 5.20 The R? between real and simulated data sets from data with 4000 and

8000 random peptides.
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Figure 5.21 The estimation results from the beta mixture model on data set with a
very large imbalance ratios between two components. (A) The data distribution of
predicted binding affinity (log10(ICso)) of a specific HLA allele. (B) The beta models
can fit to two components of data distribution to estimate parameters for true and false
data. (C) The similarity measure from the linear regression model fitting correlation
of the real and simulated data set, m = slope, ¢ = y-intercept. (D) FDRs and PEPs

calculated from estimated true and false data of each predicted ICso.
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Figure 5.22 The estimation results from the beta mixture model on predicted ICso of
peptides from multi-allelic cells. (A) The data distribution of predicted binding
affinity (log10(ICs0)) of each HLA allele expressed by multi-allelic cells. (B) The beta
models can fit to two components of the data distribution to estimate parameters for
true and false data. (C) The similarity measure from the linear regression model fitting
correlation of the real and simulated data set, m = slope, ¢ = y-intercept. (D) FDRs

and PEPs calculated from estimated true and false data of each predicted 1C50.
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Figure 5.23 The performance of parameter estimation model for beta mixture testing
with data sets with multi-lengths peptides (8-11 mers). (A) The R? between the real

and the simulated data sets. (B) The overlaying of data distributions between the real

and simulated data sets.

5.2.3. The estimation of FDR and PEP from simulated data sets generated by
estimate parameters for the predicted scores

The values of FDR and PEP of an individual predicted score were calculated from the
estimated parameters by beta distribution functions. The FDR was estimated using a
CDF (Eg. 3.32), while the PEP was computed based on a PDF (Eg. 3.33) given by
estimated beta parameters derived from the EM model, which are a;yye, Berues Afiases
and Brqise. From NetMHCpan’s documentation, the 2% rank is recommended to use
as a threshold for binding peptide selection. The % rank scores were estimated from
number of random peptides that have ICso scores located in the range of predicted

scores of a set of naturally presented MHC ligands. Hence, the role of % rank score is
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assumed to estimate the FPR of true predicted data. Here, this analysis performed the
estimation of statistical confidence measure of FDR and PEP for peptide binding
prediction from the test data sets of a mixture of MS and random peptides. The results
in Figure 5.24 showed that the accumulated FDR value at the 2% rank score of most
alleles are less than 0.1, but about 25% of the representative data sets (21 of 85
alleles) have the FDR at the 2% rank score reach up to 0.26 e.g. B*15:10, C*01:02,
and C*07:04, i.e. 26% of peptides passing the threshold are predicted to be false
positives (Figure 5.24A). At the 2% rank threshold, the FDR of HLA-C (0.13) is the
highest on average followed by HLA-B (0.07), and the average of HLA-A (0.03) is

the lowest (Figure 5.25).

To assess the confidence of each peptide’s predicted score, the PEP was computed for
each peptide in the data set. The analysis demonstrated that 48 of 85 data sets have the
PEP at the 2% rank over 0.5, i.e. peptides close the threshold have only a 50% chance
of being a true positive (Figure 5.24B). Moreover, the PEP at the 2% rank of HLA-B
and HLA-C on average are greater than 0.5 (0.64 and 0.63, respectively) whilst the
average PEP of HLA-A is 0.38 (Figure 5.25).The overlaying of PEP values on the
data distribution of predicted ICso scores from 85 HLA alleles in Figure 5.24C
showed that the logio (ICs0) < 2 or > 4 have a high certainty for being true or false
binding peptides, their PEP values close to 0 and 1. For the scores in the range of 2 to
4 have less certainty to determine whether they should be true or false binding
peptides, especially for less well separated data sets of some alleles. Several data sets
have PEP values close to 1 for peptides with the % rank ~ 2% e.g. A*02:07, A*29:02,
B*15:10, B*27:02, C*08:01, and C*14:03, in contrast, some data have very low PEP

values, even if those scores have the % rank > 2%, scores are determined as non-
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binding peptides, e.g. A*02:11, B*15:17, B*27:05. These results suggest that PEP
values provide considerable added value over the use of the % rank for estimation of
confidence in an individual data point. Beyond the MS:random data sets generated for
85 alleles data, the FDRs and PEPs from data containing almost all true or all false
data (Figure 5.21D) and multi-allelic data (Figure 5.22D) were calculated from
estimated beta parameters using Eq. 3.32 and 3.33. The results demonstrated that the
values of FDR and PEP correspond well with expected true and false data, giving

confidence that the model will perform well when presented with genuine data sets.
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Figure 5.24 Estimation of FDR and PEP for predicted scores of 85 HLA alleles. The
values of accumulated global FDR (A) and PEP (B) at the 2% rank. (C) The
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overlaying of PEP values on the data distribution of predicted scores of 85 HLA

alleles, the dashed black line was marked at the score with 2% rank.
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Figure 5.25 FDR and PEP at the 2% rank score of HLA-A, HLA-B, and HLA-C. The

red line in the box represents median of FDR or PEP.

FDR/PEP at 2% rank

5.2.4 Extensibility for MHCflurry prediction

The previous analysis has been primarily tested with NetMHCpan, though, past
benchmarking results suggest that MHCflurry gives similarly strong performance for
peptide binding prediction, the approach in this study was thus extended for predicted
results coming from MHCflurry2.0. MHCflurry also reports predicted 1Cso and %
rank, however, the MHCflurry’s documentation does not suggest the cut off threshold
of the % rank. Therefore, the 2% rank was assumed as a possible threshold for
distinguishing binders and non-binders, as for NetMHCpan. There are 79 HLA alleles

supported by MHCflurry, and there are 55 alleles of 9mers MS-random peptides in
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this study, which are available for those supported alleles. To estimate parameters
from data distributions from MHCflurry prediction results, the parameter ranges that
are calculated from MHCflurry predicted scores of random peptides in various data
sizes (1000, 5000, and 10000) were applied to constrain the EM model instead of
parameters ranges calculated from NetMHCpan predicted scores. The R? between the
real (predicted 1Cso scores) and simulated data set ranged from 0.995 to 0.999 for
most alleles (Figure 5.26A), and the overlay between the real and simulated data is
shown in Figure 5.27. Thus, those results indicate that the approach of EM algorithm
with method of moments also works well for predicted data coming from MHCflurry.
The analysis of FDR and PEP estimation showed that if using a 2% rank threshold,
over 10% global FDR occurs for 18 alleles, and PEP is higher than 50% for 27 of 55
alleles — indicating that as for MHCflurry, 2% rank is not an ideal threshold for

controlling FDR for many alleles (Figure 5.26B and 5.26C).
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Figure 5.26 The analysis of the model with predicted results from MHCflurry. (A)
The R? between the real and simulated data sets. The values of estimated FDR (B) and
PEP (C) for predicted scores of 55 HLA alleles at the 2% rank score.
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Figure 5.27 The overlaying of data distributions between the predicted scores from

MHCflurry and their simulated data sets.
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5.3 The development of an immunogenicity prediction model for distinguishing
immunogenic and non-immunogenic peptides using Random Forest

The model from the previous result can estimate global and local FDR for predicted
MHC-peptide binging affinity scores. Using FDRs (either local or global, depending
on the context) as one of criteria to select binding peptides would help to avoid
selecting false binding peptides, and thus reduce the risk for getting non-functional
neoantigen because non-binding peptides cannot be epitopes. However, as the context
described in Section 3.6, all epitopes must be MHC binding peptides, but some MHC
presented peptides can be non-immunogenic peptides i.e. those that do not generate an
immune response. Therefore, to increase the chances to obtain genuine neoantigens,
prediction of immunogenicity is also required. The process of antigen processing and
MHC presentation allows T cells to detect antigens presented by MHC molecules.
The interaction of TCR and antigen involves a strong binding between TCR, MHC
molecule and presented peptide. Due to sophisticated steps for T cell recognition and
extremely high variety of T cell receptors, resulting in enormous variety of preference
patterns of TCR-peptide binding (Section 3.1.1), the characterisation of the specificity
for TCR-peptide interaction using prediction algorithms is very challenging. The
recent immunogenicity prediction approaches consider the peptide sequence as the
starting point, because TCR-epitope interaction is governed by physicochemical
principles like other protein-protein interactions, and the concept of “foreignness”
since a host’s T cells will be stimulated by non-self-antigens. In this section, a
machine learning model for immunogenicity prediction was developed. The model
was built using the Random Forest (RF) algorithm and aimed to classify peptides to

two categories, those that are immunogenic and non-immunogenic peptides. The
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training data were collected from a data set of MHC class | presented peptides
including immunogenic and non-immunogenic peptides derived from previously
published immunogenicity experiments. A set of features related to physicochemical
properties and divergence from the nearest human homolog, were exploited to create
the classifier model, reported in Section 5.3.1. In Section 5.3.2, the benchmarking
analysis was performed, and predicted probability scores obtained from the classifier
model were studied and calibrated to real probability scores relying on the probability
density of the data distribution, described in Section 5.3.3. For the final part, the
Random Forest model was further investigated to understand how the model makes

decisions, summarised in Section 5.3.4.

5.3.1 Immunogenicity classification prediction model

The initial set of features was created from physicochemical properties in Table 4.4 as
well as the similarity features. Numerical values of a property from the AAindex
database were applied to each amino acid in a 9mers peptide. Thus, a 9mers peptide
can generate 182 features including 180 features from 18 physicochemical properties
and two features from similarity properties. The first model was built from all 182
features using RandomForestClassifier model with 70% training and 30% testing.
The model performance was evaluated by AUC score from ROC curve with 10-fold
cross-validation. With 182 features, the average AUC is 0.726 which means there is
~73% chance that the model will be able to distinguish between immunogenic and
non-immunogenic peptides. Even though the AUC score is not near to 1, it showed
that the model can classify two classes of peptide with fairly high discrimination
capacity. Moreover, the average F1 scores for positive and negative classification

from 10 runs are 0.709 and 0.601, respectively suggesting that the model has a
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slightly better accuracy for classifying immunogenic class than non-immunogenic
class. The high importance values were mostly found in summation of all residues
features and similarity features (Figure 5.28). However, importance values from the
model with 182 features were very low per feature, indicating that most features are
only making a small contribution to the model performance. This makes for a model
that is hard to interpret and difficult to know if it will work well beyond the source

data used for training.

To reduce the number of input variables that might not contribute to the model
decision and sculpt more interpretable decision trees, feature selection was therefore
performed to retain a small number of key features that contribute more highly to
model performance. The feature selection was performed as described in Section 4.19.
The algorithm was terminated when AUC scores were substantially declining. It was
found that decreasing feature numbers does not significantly improve AUC scores
(Figure 5.29). From inspection, the AUC score started falling from the model with 70
features (AUC = 0.723), and the AUC score of the final model (17 features) is 0.715
(Figure 5.30A). The objective for this analysis is to determine a set of features that
should not decrease the performance model’s predictability, therefore, a set of
features that is as small as possible and does not substantially drop the AUC score
was selected. From the result in Figure 5.30B, the models trained with 42 and 17
features were assessed, as follows. The AUC scores from 10-fold cross validation of
42 features model is not significantly different from the original model (182 features),
but the AUC score from 17 features model is substantially decreased from the original
model (Figure 5.31). Therefore, a set of 42 features was determined as the optimal set

of features for training the Random Forest model, the list of 17 and 42 features were
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shown in Table 5.6 and 5.7, respectively. Although, a set of features from feature
selection analysis cannot considerably improve the performance of the Random Forest
model for immunogenicity classification, a small set of feature number does make the
model more understandable and can reduce inconsistency from irrelevant features

contributing to a tree decision.
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Figure 5.28 The reported performance of the Random Forest model with 182
features. The average of AUC scores, F1 scores for positive and negative classes were

obtained from 10 runs.
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Figure 5.31 The AUC scores from 10-fold cross validation from models with 182, 42,

and 17 features. Each bar represents mean+sd. The p-values were obtained from

Student's t-test analysis, NS (non-significant), **(p-value, 0.01).

Table 5.6 The set of 17 features yielded from the feature selection analysis

Features

Description

p2_Z1MJ680104

Isoelectric point of position 2

sum_ZI1MJ680104

Isoelectric point of a peptide

sum_GRAR740102

Polarity (Grantham, 1974) of a peptide

p3_FAUJ880103

Normalized van der Waals volume of positon 3

p9_FAUJB80103

Normalized van der Waals volume of positon 9

sum_FAUJ880103

Normalized van der Waals volume of a peptide

sum_HUTJ700103

Entropy of a peptide

sum_OOBM770102

Short and medium non-bonded energy per atom of a peptide

sum_BLAS910101

side chain hydrophobicity of a peptide

blast_score

Similarity of peptides and host’s proteome

sum_EISD860102

Atom-based hydrophobic moment of a peptide

sum_OOBM770103

Long range non-bonded energy per atom of a peptide

sum_GOLD730101

Hydrophobicity factor of a peptide

sum_EISD860103

Direction of hydrophobic moment of a peptide

sum_FASG760101

Molecular weight of a peptide

sum_ZIMJ680103

Polarity (Zimmerman et al., 1968) of a peptide

sum_KRIW790102

Fraction of site occupied by water of a peptide




Table 5.7 The set of 42 features yielded from the feature selection analysis
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Features

Description

p2_ZIMJ680104

Isoelectric point of position 2

p9_ZIMJ680104

Isoelectric point of position 9

sum_ZIMJ680104

Isoelectric point of a peptide

p2_GRAR740102

Polarity (Grantham, 1974) of position 2

sum_GRAR740102

Polarity (Grantham, 1974) of a peptide

p3_FAUJ880103

Normalized van der Waals volume of positon 3

p9_FAUJ880103

Normalized van der Waals volume of positon 9

sum_FAUJ880103

Normalized van der Waals volume of a peptide

p6_FAUJ880103

Normalized van der Waals volume of positon 6

sum_HUTJ700103 Entropy of a peptide
pl HUTJ700103 Entropy of position 1
p8 HUTJ700103 Entropy of position8

p2_OOBM770102

Short and medium non-bonded energy per atom of position 2

p7_OOBM770102

Short and medium non-bonded energy per atom of position 7

p6_OOBM770102

Short and medium non-bonded energy per atom of position 6

sum_OOBM770102

Short and medium non-bonded energy per atom of a peptide

p3_BLAS910101

side chain hydrophobicity of position 3

p7 BLAS910101

side chain hydrophobicity of position 7

sum_BLAS910101

side chain hydrophobicity of a peptide

blast_score

Similarity of peptides and host’s proteome

sum_EISD860102

Atom-based hydrophobic moment of a peptide

p6_EISD860102

Atom-based hydrophobic moment of position 6

sum_OOBM770103

Long range non-bonded energy per atom of a peptide

p8_OOBM770103

Long range non-bonded energy per atom of position 8

p3_OOBM770103

Long range non-bonded energy per atom of position 3

pl PRAM900101

Hydrophobicity of position 1

p5_PRAM900101

Hydrophobicity of position 5

p9_PRAM900101

Hydrophobicity of position 9

p7_PRAM900101

Hydrophobicity of position 7

sum_PRAM900101

Hydrophobicity of a peptide

p5_KRIW710101

Side chain interaction parameter of position 5

p4 KRIW710101

Side chain interaction parameter of position 4

sum_KRIW710101

Side chain interaction parameter of a peptide

sum_GOLD730101

Hydrophobicity factor of a peptide

sum_EISD860103

Direction of hydrophobic moment of a peptide

p9_FASG760101

Molecular weight of position 9

sum_FASG760101

Molecular weight of a peptide

sum_ZIMJ680103

Polarity (Zimmerman et al., 1968) of a peptide

p2_KRIW790102

Fraction of site occupied by water of position 2

sum_KRIW790102

Fraction of site occupied by water of a peptide

sum_EISD840101

Consensus normalized hydrophobicity scale of a peptide

sum_DAWD720101

Size of a peptide
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5.3.2 Benchmarking analysis

Form the previous analysis, the optimised model was created by a set of 42 features in
Table 5.7. To evaluate the model performance compared to the existing tools, the
model was compared to existing MHC class | immunogenicity prediction tools which
are Immunogenicity [130] and INeo-Epp [142], these models were built by sequence-
based learning and trained with physicochemical properties. The data set for
benchmarking was split from the whole data set for 10%, hence, the 10% validating
data was used to test with the Random Forest model and those two published models
and had not been used to train our model or select features. The AUC scores from the
model in this study and those two models were calculated from the prediction of the
same data set (10% validating data). It revealed that the performance of the Random
Forest model in this work (AUC=0.729) outperforms Immunogenicity (AUC=0.516)
and INeo-Epp (AUC=0.699) with respect to F1 scores of the Random Forest model,
Immunogenicity, and INeo-Epp (0.649, 0.510, and 0.578, respectively) (Figure 5.32A

and B).
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Figure 5.32 The benchmarking analysis of the Random Forest (RF) model and the
existing tools. (A) The ROC plots representing AUC scores for all tools. (B) The bar
plot of F1 scores obtaining from all tools.
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5.3.3 Predicted probability calibration

The probability scores from the Random Forest model were calculated from the
average probabilities over the number of trees in the forest, although it may not be a
real probability for other unseen data that might not be different in data size or a ratio
between positives and negatives data. Therefore, the predicted probability scores
produced from the Random Forest model should be calibrated to real probabilities that
can be further applied for any data prediction. The distribution of pseudo-probability
scores corresponding to immunogenic class was observed for known true and false
data set (Figure 5.33A). Then, the distributions were fitted to two beta components,
and true posterior probability of each predicted probability (a reverse posterior error
probability (1-PEP)) was calculated from the PDF of beta distribution. The plot of
pseudo-probability against to true posterior probability displayed a non-linear
relationship between pseudo-probability and true posterior probability, especially
scores in range of 0.8 to 1, but it seems to be a sigmoid curve-like (Figure 5.33B).
Therefore, the logistic regression function in Eq. 4.1 was selected to model the data
and fit to that sigmoid curve to estimate those constant values that could form the best
equation for transforming pseudo-probability to calibrated probability. The estimated
constant values from different training data sizes showed small variation (Table 5.8).
Kullback—Leibler (KL) divergence was used to evaluate similarity between each set
of fit data and three observed true posterior probability data with 20%, 30%, and 40%
testing data. A set of constant values from 30% testing data has the lowest average KL
value for all three data sets (Table 5.8) indicating that transforming data by the
logistic regression with these constant yields the best fitted data (Figure 5.34). Hence,

the formula in Eqg. 4.2 was further used to transform pseudo-probability values from
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the Random Forest model to calibrated probability scores for the immunogenicity

prediction.
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Figure 5.33 The pseudo-probability scores and true posterior error probability (1-
PEP). (A) The distribution of pseudo-probability of immunogenic and non-
immunogenic data sets. (B) The plot between each pseudo-probability score against
its true posterior probability (1-PEP), which is estimated from the density of the data

distribution.
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Table 5.8 The estimated constant values from the logistic regression fit and

Kullback—Leibler (KL) divergence values

Constants KL divergence value
Observed data - - -
(% testing size) a b n y fit_20%|y fit_30% /|y fit_40%| Average
20% 6.713 3.351 0.033 1.528 2.004 1.790 1.774
30% 5.870 2.892 0.048 1.168 1.538 1.373 1.360
40% 6.415 3.333 0.044 1.307 1.721 1.531 1.520

5.3.4 The model interpretation

The treeinterpreter function provides a contribution value of each feature for the

prediction of each class. The average prediction value is yielded from the average of

all possible predictions in data from the path going through an individual node in a

tree. Each node in the decision tree represents some feature and makes a decision

based on the feature value in the sample. For the Random Forest where there are
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multiple trees, the final prediction is computed from an average of all trees. The
contribution value of each feature in Table 5.7 was assessed using the treeinterpreter
function to reveal the features that influence the immunogenicity classification model.
The result from the treeinterpreter returns contributed values of every feature for
every data point in a training data set. For each data point, the feature thar has the
highest contributed value was determined. The percent frequency of each feature was
computed by counting from a set of highest contributed features across all data points.
A larger number means the feature has been frequently found in a set of highest
contributed features indicating that the feature has more influence on the model
decision. The percent frequency for all features is shown in Table 5.9. Among those
features, the properties related to polarity highly contribute to the model, which are
isoelectric point (22.4%) and polarity (11.1%). The second highest influence was
found in properties involved in hydrophobicity, the summation of those feature has a
frequency of 30.9%. Moreover, features that relate to a strength of binding interaction
associated with non-covalent intermolecular interaction have a contributed frequency
of 15.3%, which are Short and medium non-bonded energy per atom and Long range
non-bonded energy per atom. Furthermore, entropy has a moderate impact (9.3%) on
the model, this property is also involved in a strength of binding affinity. Molecular
weight (2.2%) of amino acid and the similarity feature (blast score, 2.3%) contribute
less to the model compared to other features (Figure 5.35). Overall, the result from the
model interpretation revealed properties related to the strength of binding interaction
mostly contribute to the decision of the model to classify immunogenic and non-
immunogenic peptides suggesting that those properties might be favourable for

interaction between T cell receptors and peptides.
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Figure 5.35 The contribution of important features to the prediction model. The bar
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contributed features across all data points.
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Table 5.9 The percent frequency counting from number of found highest contributed

values of 42 features

Features

Description

%

Frequency

sum _HUTJ700103 4.06
pl HUTJ700103 Entropy of formation (Hutchens, 1970) 3.19
p8 HUTJ700103 2.06
Sjr;ljiglv\/@%tﬁz Fraction of site occupied by water (Krigbaum-Komoriya, 1979) égg
pl PRAM900101 1.86
p5 PRAM900101 1.6

p9 PRAM900101 Hydrophobicity (Prabhakaran, 1990) 1.46
p7 PRAM900101 1.26
sum_PRAM900101 0.33
p3 FAUJ880103 7.65
p9 FAUJ880103 . 3.19
sum FAUJB80103 Normalized van der Waals volume (Fauchere et al., 1988) 06

p6 FAUJ880103 0.73
sum_EISD860103 Direction of hydrophobic moment (Eisenberg-McLachlan, 1986) 1.6

sum_EISD840101 Consensus normalized hydrophobicity scale (Eisenberg, 1984) 0.73
p3 BLAS910101 3.32
p7 BLAS910101 Scaled side chain hydrophobicity values (Black-Mould, 1991) 0.66
sum_BLAS910101 0.6

sum_GOLD730101 Hydrophobicity factor (Goldsack-Chalifoux, 1973) 1.66
sum_EISD860102 / . 2.13
06_EISD860102 Atom-based hydrophobic moment (Eisenberg-McLachlan, 1986) 153
p2_ZIMJ680104 10.64
p9 ZIMJ680104 Isoelectric point (Zimmerman et al., 1968) 7.38
sum_Z1MJ680104 4.39
p2 GRAR740102 . 9.11
sum GRAR740102 Polarity (Grantham, 1974) 0.8

sum_ZI1MJ680103 Polarity (Zimmerman et al., 1968) 1.2

p2_00BM770102 3.59
p7_O0BM770102 | Short and medium range non-bonded energy per atom (Oobatake- 2.99
p6_OOBM770102 Ooi, 1977) 2.73
sum_OOBM770102 1.93
sum_OOBM770103 1.93
p8 OOBM770103 Long range non-bonded energy per atom (Oobatake-Ooi, 1977) 1.26
p3_0O0OBM770103 0.86
p5 KRIW710101 1.86
p4 KRIW710101 Side chain interaction parameter (Krigbaum-Rubin, 1971) 1.4

sum_KRIW710101 0.86
p9 FASG760101 . 1.53
sum FASG760101 Molecular weight (Fasman, 1976) 0.66
sum_DAWD720101 Size (Dawson, 1972) 0.66
blast_score Similarity of peptides and host’s proteome 2.26
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5.4 A pipeline for ranking predicted neoantigens using the estimation of local
FDR and immunogenicity prediction

The previous section described the development of models for scoring MHC-peptide
binding prediction and for immunogenicity prediction. The global/local FDR
estimation model, MHCVision, in Section 5.2 can help to improve criteria selection
for MHC binding peptides, whilst the Random Forest model in Section 5.3 can
predicted immunogenicity of peptide sequences based on T cell preferences of
chemical properties of amino acids. The outcomes from those two models contribute
to a potent of neoantigen properties i.e. peptides that have a strong binding with MHC
molecules and can stimulate T cell activity, thus, those models should be integrated to
be a pipeline that produce a final probability of MHC binding and T cell recognition.
The final probability can be used for neoantigen selection or prioritisation. In this
scetion, MHCVision and the Random Forest models were combined to be a pipeline,
so called MHCVision-RF, and the final probability was computed from true MHC
binding probability (1-PEP) and immunogenicity probability. The final probability
produced by MHCVision-RF can be served as ranking scores for neoantigen
selection. The mathematical operation for final probability calculation was reported in
Section 5.4.1, then the workflow of a pipeline and code implementation were
described in Section 5.4.2. In Section 5.4.3, the pipeline was applied to data with
experimental validation from previous published studies to explore if the ranking

score from the pipeline can separate neoantigen

5.4.1 Generation of the final probability of MHC binding and T cell recognition
The final probability is the combination of true MHC binding probability (1-PEP)

from MHCVision and immunogenicity probability from the Random Forest model,
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and this score will be used as the ranking score for candidate neoantigen selection. To
find the method of mathematical operation for final probability calculation, the
correlation between true MHC binding probability and immunogenicity probability
was observed using a scatter plot. The correlation coefficient between two data was
evaluated by R? calculated from the linear regression model. It was found that there is
no correlation between those two scores (R? = 0.019) suggesting that the production of
those probability scores is independent (Figure 5.36A). Moreover, there are no
correlation between those two probabilities when true binding probability was
constrained for binding (1-PEP > 0.8), or non-binding peptides (1-PEP < 0.1) shown
in Figure 5.36B and 5.36C, respectively. As mentioned before in Section 5.3,
immunogenic peptides tend to be biased for MHC-binding peptides, but the data
training for the RF model in this research was standardised the MHC binding ability
between positive and negative classes to avoid the bias from binding and non-binding
classification. Therefore, a lack of correlation between high binding probability and
immunogenicity probability can indicate that the RF model in Section 5.3 purely
distinguish immunogenic and non-immunogenic peptides based on T cell preference’s
properties. Thus, the final probability produced from MHCVision-RF was calculated
from a multiplication between true MHC binding probability and immunogenicity

probability with an equal weight value of each factor.
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Figure 5.36 The relationship between true MHC binding probability from
MHCVision and immunogenicity probability from the Random Forest model. The
correlation of immunogenic probability and non-restricted MHC binding probability
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5.4.2 The overall workflow of MHCVision-RF pipeline

The pipeline for ranking MHC class | neoantigen was built by integrating of
MHCVision which provides true MHC binding probability and the Random Forest
model of immunogenicity prediction. Users can opt to use either MHCVision alone
for other works that do not need immunogenicity scores, or they can use the whole
pipeline that produces the final probability scores which can further apply to the
process of candidate neoantigen selection. The algorithm and implementation of

MHCVision were fully described in Section 5.2, and the algorithm of the Random

0.1
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Forest model was reported in Section 5.3. Here, the workflow MHCVision-RF was

described (Figure 5.37).

a.) Prediction of MHC-peptide binding affinity

MHC-peptide binding predictions are made between peptides and HLA types. The
current version of MHCVision is available for only MHC class | that are supported in
NetMHCpan 4.1 or MHCflurry. Users can opt to use either NetMHCpan or
MHCflurry with the option that provides predicted binding affinity (ICso) in nM unit

because this score is used for FDR/PEP estimation.

b.) Input data preparation

MHCVision will run for an individual HLA allele at a time since the algorithm was
built with restriction of HLA-specific estimated values. Before running, the output file
from NetMHCpan or MHCflurry need to be formatted in comma delimited format
(CSV) with one HLA allele for a file, the input table must contain columns of

peptides and their predicted ICso in nM unit (Figure 5.38A).

c.) Estimation of true MHC binding probability by MHCVision

Global and local FDRs will be estimated from the distribution of predicted ICso by
MHCVision. The algorithm will annotate FDRs, PEPs, and reversed PEPs, so called

true MHC binding probability for each peptide.

d.) Immunogenicity probability prediction by the Random Forest model

Peptides from an input data will be translated to numerical matrix and taken as input

to the Random Forest model. The model will predict a probability of each peptide,
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and that score will be transformed to the real probability, which is annotated as

immunogenicity probability, by the logistic regression model.

e.) Generation of the final probability of MHC binding and T cell recognition

The final probability is computed from a multiplication between true MHC binding
probability and immunogenicity score, thus final scores range from 0 to 1 where 1 is
the best score for being a true neoantigen that means the peptide has a strong binding

to MHC molecule and high potent for T cell recognition.

The final output will return extra columns of statistical information from MHCVision,
immunogenicity probability, and final probability MHC binding and T cell
recognition for each peptide (Figure 5.38B). The information from MHCVision-RF
gives users the ability to make an informed selection of neoantigens with high

potential of being true neoantigens.



a.) Prediction of MHC-peptide binding affinity

o0 8-11 mers
= 2 )
=’g o peptides
I 4

5 2
. HLA

o
= alleles

o

c.) Estimation of true MHC binding probability by MHCVision

NetMHCpan
OR
MHCflurry

Peptides |

Predicted
ICs,

Predicted
— MHCVision —p
ICsq

149

Prediction
output

Global/local
FDR (PEP)

d.) Immunogenicity probability prediction by the Random Forest model

Immunogenicity
prediction
(Random Forest

—

Immunogenicity
probability

e.) Generation of the final probability of MHC binding and T cell recognition

b.) Input data preparation
Input table —
2 (.csv)
g I ———
E‘ Peptide IC50
c
Re)
]
S
=
%
=
2 .
= Peptides —
) I
o)
c
©
o
2
3
(7]
oo
£
Y4
=
(1]
o

Final probability = Immunogenicity probability X (1-PEP)

Figure 5.37 The workflow of MHCVision-RF and the calculation of final probability.
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4805,41.4017
4375,87.8229
1211;311.1397
5244,2.8128

3008,50.4551
1641,65.6992

25,41.7252
0938,52.0062
9883,35.5436
8672,9.7862
125,55.8239

6914,5.4409

7031,51.8916

3477,30.0339

2148,35.5755

7344,66.7754
|
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Outputs from Predicted scores
B MHCVision from the RF model

1 1

Peptide, IC50, $Rank, FDR PEP, True probability (1- PEP) Immunogenlc probablllty,Flnal probablllty
AAQAFRLNN, 46108.3203,73.2759,0.6960,0.8492,0.1508,0.5832,0.0879
AATRDMNGK, 44539.7109,59.8615,0.6691,0.8398,0.1602,0.5953,0.0954 l
ADAKAATRD, 48835.4922,96.4654,0.7485,0.8550,0.1450,0.6432,0.0932

AEFTVDSKD, 47971.9258,91.5936,0.7295,0.8567,0.1433,0.5587,0.0800
AEGRLWLRV, 41063.6992,39.3665,0.6074,0.8127,0.1873,0.6313,0.1182
AESLVERTP, 47673.3516,88.8125,0.7238,0.8560,0.1440,0.5953,0.0857
AFRLNNLGS, 44480.9492,59.4283,0.6681,0.8394,0.1606,0.5465,0.0878
AFVTFESPA, 30948.6094,15.2999,0.3972,0.6783,0.3217,0.6549,0.2107
AGFFFYSEI, 15488.7051,4.2669,0.0785,0.2356,0.7644,0.4978,0.3805

AGRLPESEP, 47552.8008,87.5938,0.7216,0.8556,0.1444,0.7736,0.1117
AKAATRDMN, 48825.9844,96.4362,0.7483,0.8551,0.1449,0.5465,0.0792
ALHEVVDLF,11462.5244,2.8128,0.0330,0.1125,0.8875,0.6780,0.6017

ALLPLHGNR, 34726.9219,21.0816,0.4811,0.7402,0.2598,0.6665,0.1732
ALLPLHGNR, 34726.9219,21.0816,0.4811,0.7402,0.2598,0.6893,0.1791
AMLMRKGQD, 46144.7617,73.6160,0.6967,0.8494,0.1506,0.7330,0.1104
ANTTSCHTL, 38891.9688,31.2408,0.5663,0.7916,0.2084,0.5953,0.1241
APHQWLALL, 32629.0879,17.5971,0.4351,0.7078,0.2922,0.7223,0.2110
AQAFRLNNL, 15768.0439,4.3754,0.0825,0.2450,0.7550,0.6313,0.4766

AQEPSRPLF, 32537.4277,17.4576,0.4331,0.7063,0.2937,0.3501,0.1028
ASFTVKMQP, 42817.8047,48.1530,0.6391,0.8274,0.1726,0.4267,0.0737
ASLAMLMRK, 38496.3477,30.0339,0.5586,0.7873,0.2127,0.6194,0.1317

Combined scores
from MHCVision-RF

Figure 5.38 The example of input and output files of MHCVision-RF. The example
of an input file format (A) and the columns written in an output file (B).
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5.4.3 Assessment of the final probability of MHC binding and T cell recognition
with data sets from published studies

To assess the separation ability of MHCVision-RF for neoantigen selection, the
assessment analysis was performed by using data from two previously published
studies. The list of 9 to 11 mers peptides of three patients with available HLA data in
the experiment from Patrick Ott et al., 2020 was used to apply with MHCVision-RF.
Peptides obtained from each patient consist of both immunogenic and non-
immunogenic peptides. The distribution of final probability scores between the
immunogenic and non-immunogenic groups of M1 and L7 patients is not clearly
different (Figure 5.39A and 5.39D, respectively). While the final probability of the
immunogenic group showed higher median than that from non-immunogenic peptides
in an M3 patient for both HLA-A*11:01 and A*68:01 (Figure 5.39B and 5.39C,
respectively). Especially in A*11:01 of M3, the result displayed a significant
difference of mean between immunogenic and non-immunogenic probabilities
(student’s t-test, p-value = 0.0015; Figure 5.39B). A limitation of this analysis is that
it was performed against only one or two HLA alleles of a patient that is available in
the publication (more detail in Section 4.24), but a person can express at least three
HLA alleles and potentially up to six alleles. As such, it is possible that some low
probabilities found in immunogenic peptides might be due to the peptide binding to

other HLA types carried by the patients that we have not been able to predict.
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Figure 5.39 The final probability of immunogenic and non-immunogenic peptides

from melanoma patients (M1 and M3) and a lung cancer patient (L7) (Patrick Ott et

al., 2020). Each box plot represents the final probability scores, mean (red triangle),

and median derived from immunogenic and non-immunogenic peptides. The analysis
was performed against to HLA-B*51:01 for M1 (A), HLA-A*11:01 (B) and A*68:01
(C) for M3, and HLA-B*81:01 for L7 (D) [172].

Due to the limitation of HLA information, the experimental data from Yong Fang et

al., 2020 was also used to evaluate the pipeline because this work provided all HLA

types of each patient. In that study, they reported peptides in a long sequence format

that are designed by adding amino acid sequences to short mutated peptides from the

prediction methods described in the paper. To reverse the process of neoantigen
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prediction, long peptides were needed to chop into 9mers which is the common length
for MHC class I ligands. Since they pooled two or three peptides for T cell activity
assay, it is a limitation to specifically identify which peptide in the pool can trigger T
cell activity. Therefore, among all patients, four patients who has all positive pools
(PO03 = Posl and P004 = Pos2) or all negative pools (P011 = Negl and P016 = Neg2)
were selected to perform the analysis. The predicted results from all HLA alleles of
each patient were combined, and the top 20 scores were selected to observe the
difference between positive and negative class. The analysis result was found that the
highest 20 ranking scores of Pos2 and Negl are obviously different, and those from
positive group have substantially greater than negative group (Figure 5.40). However,
the ranking scores from Pos1 are not different from Negl and Neg2, and the scores of
Neg2 has high outliers. In other words, we do not observe that patients with positive
reactions generally are predicted to have peptides with higher immunogenicity. This
result might be due to variation from external factors relating to different cancer
types, general overall disease burden or a personal genetic background. Therefore, the
comparison among patients with different cancer types might not be appropriate to
represent a difference between ranking scores of immunogenic and non-immunogenic
peptides because the ability of immune response from individuals are different. It
might be possible that the experimental result from Neg2 might not be due to wrong

selection neoantigen but might be affected by immunodeficiency of the patient.
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Figure 5.40 The top 20 final probability scores of data obtained from positive and
negative pooled peptides (Yong Fang et al., 2020). A box plot represents data of the
highest final probability scores, mean (red triangle), and median of positive and
negative pooled peptides from four cancer patients (Posl: Adrenal Sebaceous
Adenocarcinoma (P003), Pos2: Small Cell Lung Cancer (P004), Negl: Ovarian
Cancer (P011), and Neg2: Non-Small Cell Lung Cancer (P016)) [173].

To avoid the factor of immunogenetics across patients, a comparison within the same
patient was performed using the data set from a patient who has both positive and
negative pools (P001). The result showed that the ranking scores from positive pools
are much higher than those from negative pools (student’s t-test, p-value < 0.00001;
Figure 5.41A). Moreover, the scores with control 10% FDR, that means all peptides

in both positive and negative group are potentially binding peptides, still showed
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higher scores in positives than negatives (student’s t-test, p-value = 0.0001; Figure

5.41B) indicating that the differentiation is not only classified by MHC-binding

affinity prediction, but also from immunogenicity prediction. In summary, even if

there are some limitations because of lacking full information for neoantigen

prediction analysis, results in the assessment analysis indicate ranking scores can

distinguish neoepitopes from non-neoepitopes suggesting that the ranking score

produced by the pipeline can assist with true neoantigen selection.
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Figure 5.41 The final probability of positive and negative pooled peptides from one

cancer patient (Yong Fang et al., 2020). The box plots represent the data of final

probability scores, mean (red triangle), and median of positive and negative pooled

peptides from a melanoma patient (P001) with non-control FDR (A) and within 10%

FDR

[173].
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CHAPTER 6

DISCUSSION

6.1 Neoantigen prediction using computational methods and the analysis of
criteria selection from NetMHCpan and MHCflurry

The current technology of genomics sequencing and bioinformatics allows the
identification of tumour-specific mutation in protein sequences that play a role as
neoantigens for cancer vaccines. Thus, identification of neoantigens is crucial for
cancer therapeutics-based cancer vaccine. In Section 5.1, the analysis of neoantigen
identification was performed via the application of genomic analysis with packages of
bioinformatic software and structure analysis with a molecular dynamic simulation
technique. In this study, the tissue and blood samples for DNA and RNA sequencing
were obtained from nine colorectal patients from King Chulalongkorn Memorial
Hospital, Bangkok, Thailand. This part has been achieved through collaboration with
a research team at the Faculty of Medicine, Chulalongkorn University, they kindly
shared sequencing data sets from their cohort to use as input data for performing
neoantigen prediction pipelines. Using prediction methods based on sequencing data,
there are several factors that can affect the accuracy of the identification (for
workflow see Figure 4.1). The quality of tumour tissue is an initial factor that results
to a quality of sequencing depth. The high depth of sequencing data can contribute
more accuracy in a set of tumour specific-mutations that are a source for neoantigens.
Besides the biological factors, accurate variant calling analysis with bioinformatic
software is critical since falsely identified mutations increase the risk of getting false

neoantigens. This study utilised GATK analysis that is a standard pipeline for
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identifying SNPs, small Indels in DNA data [156]. Since the first step that can rule
out non-neoantigens is the prediction of binding affinity between the mutated peptide
and a patient specific HLA, hence, the precision of determining MHC from a patient
is also important. MuPexI uses NetMHCpan3.0 for MHC-peptide binding prediction,
NetMHCpan has been accepted as a gold standard for MHC-peptide binding
prediction in the present [175]. In this study, Kallisto was used to quantified gene
expression level, the benchmarking with standard RNA data showed its performance

is fast and accuracy is as good as existing tools [90].

Neoantigens are highly person-specific, and mutations can occur in any genes besides
common cancer driver genes, thus neoantigen identification of individual must be
tailored made. As described above, good quality of sequencing data is firstly
important for a neoantigen prediction pipeline. However, in some cancer cases, the
tissue sample from surgery might not feasible or not enough for making a good
quality sequencing data. Furthermore, different cancer types have various level of
mutation burden, low mutation burden obstructs the neoantigen identification,
consistent with Figure 5.2 that showed a direct proportion between numbers of non-
synonymous mutations and identified candidate neoantigens. Several studies have put
the effort to investigate common mutations to create cancer vaccine as off-the-shelf
therapies. There have been approaches to mine data from publicly data in The Cancer
Genome Atlas (TCGA) to explore the common somatic mutations present in each
tumour type [176]. The analysis from that research found that TP53 mutation is highly
found across breast, head and neck and colon cancer [177]. That result agrees with our

finding that neoantigens from TP53 mutations are found in 4 of 9 colon cancer
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patients suggesting that shared mutation-specific tumour could be possibly used for

generic vaccine development.

Besides the method relying on sequencing data and binding prediction algorithms, this
analysis demonstrated a proof of concept of structure-based analysis for scoring
MHC-peptide binding energy. The results from MD simulation analysis provided
insight into the energetic binding between MHC molecule and peptide. That
information can reasonably explain the interaction of MHC-peptides by
physicochemical properties of amino acids in a peptide and in a binding groove of
MHC molecule. The advantage of structure analysis is that results can be visualised,
which allow us to observe the side chain direction of mutated residue(s) that can
further infer the potential for immunogenicity of candidate peptides. It has previously
reported that peptides with their mutated residues orientated towards the solvent are
likely to be immunogenic peptides because they are well captured by T cell receptor
binding region [52]. However, the approach of MD simulation might not genuinely
represent binding interaction in the real biological environment and not be suitable for
high throughput screening in practice because it consumes high computational
resources. Moreover, there are only a few MHC types that have a crystal structure
deposited in PDB. For other alleles, using a predicted structure might increase the risk
for getting inaccurate results. With those limitations, it might not appropriate for using
MD results to validate predicted results from a sequence analysis. Therefore, MHC-
peptide binding prediction algorithms relying on sequence analysis was emphasised in

this study.
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In the phase of binding affinity prediction, not only mutated gene expression data but
the detail of MHC types of patients is also required. In the present, the performance of
binding prediction algorithms relies on experimental data of peptide-MHC binding
affinity deposited in the IEDB [64], then the accuracy of prediction result might be
biased due to lacking data of some MHC types. The diversity of MHC molecules is
extremely polymorphic due to extensive polymorphism at most loci, and expression
of MHC molecules may have evolved through diversity of pathogen specific immune
system. Hence, some haplotypes might be common in specific for some ethnic
groups, which might not be common in deposited data in available databases [12].
Each MHC type has a binding preference to specific peptides, those uncommon types
might be inadequate experimental binding affinity data in the database, thus, the
algorithms might provide false predicted scores due to lack of training data. The
analysis in the Figure 5.7 supported the hypothesis above, at the 1% FPR the
predicted I1Cso has high variation across different HLA alleles, even in those are in the
same supertype i.e. the predicted ICso of all alleles in the family HLA-A*2 supposed
to be similar, but the result displayed high variation among them. Furthermore, the
predicted scores at 1% FPR are diverse from the fixed threshold of 500 nM indicating
that using the fixed threshold for any HLA alleles might not be appropriate and cannot

control a false positive rate in the predicted binding peptides.

In summary, the results provided by Section 5.2 demonstrated the use of a practical
workflow for neoantigen identification as well as the behaviour of MHC-peptide
prediction algorithms. The neoantigen identification can be generated by a sequencing
analysis approach with WES and RNA sequencing data using bioinformatic software

for variant calling, identifying MHC types, quantifying gene expression levels, and
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MHC-peptide binding prediction algorithms. The approach of protein structure-based
analysis was also promising to quantify binding strength between MHC and a peptide.
rinally, the predicted behaviour of the gold standard MHC-peptide binding prediction
algorithms including NetMHCpan and MHCflurry was explored. The predicted scores
at 1% FPR across different HLA alleles are greater or lower than the fixed threshold
suggesting using the fixed threshold might not deliver a stable ratio of true and false
positives. Therefore, the statistical values that can describe the probability of
predicted scores for being true or false positive is essential to improve the criteria for

binding peptide selection, which will be discussed further in the following sections.

6.2 The study of data distribution of MHC-peptide binding affinity from
NetMHCpan and MHCflurry for developing a model to estimate FDR and PEP

MHC-peptide binding affinity prediction is widely used in the immunology research
e.g. designing immunogenic peptides for vaccine development as shown in the
previous results. NetMHCpan (from version 4.0 onward) produces a % rank score for
each peptide predicted, estimated as the rank position of a given score within a list of
scores from a set of 125,000 of 8-12 mers random natural peptides (25,000 of each
length), assumed to represent the distribution of false results (non-binders). Rank
scores < 2% is commonly used to distinguish binding and non-binding peptides
because it reduces the known bias of binding preference across different MHC
molecules [2]. If random peptides are assumed as false results, thus, the predicted %
rank for each predicted 1Csp score is approximated as the false positive rate. However,
using only the FPR might not be sufficient to quantitatively evaluate whether a
predicted binding score for a peptide is a true or false positive, hence, the statistical

measurement that can control the false positive rate might help to increase the
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accuracy for binding peptide selection. In Section 5.3, the model to estimate statistical

values including FDR and PEP of an individual predicted score was developed.

The distribution of predicted binding affinity scores (ICso) coming from
NetMHCpan4.1 was firstly observed. The distribution of predicted scores of MS
peptides from multi-allelic cells to an MHC molecule displayed a bimodal distribution
that contains two separated peaks. From a bimodal distribution, it can infer that the
left peak contains peptides that will truly bind to an HLA allele (true positives). The
right peak contains non-binding peptides to a given HLA allele. The distribution of
the mixture of MS-random peptides for 85 HLA alleles in Figure 5.11 also
demonstrated a bimodal shape with clear separation between MS and random
distribution. Although, there are a small number of alleles that do not follow the
expected distribution shape. First, for some alleles e.g. A*34:01, B*15:02, C*12:02, a
small number of MS peptides overlap to the random peptide distribution suggesting
that they could be incorrect identifications of peptide sequences from MS data.
Second, almost alleles displayed symmetrical shape for binding peptides and right
skewed distribution for random peptides, however, there are some alleles, mostly
HLA-C, where their distribution of MS peptides showed asymmetrical shapes and do

b

not have particularly clear separation of assumed “true” and “false” positive
distributions e.g. B*14:02, C*04:01, and C*07:02. From the overall inspection of 85
HLA alleles and the analysis of statistical models fitting data distribution, the beta
mixture distribution was finally selected to model a bimodal distribution of predicted
scores from the mixture of binding and non-binding peptides. The usage of beta

model fitting MHC I predicted scores is agreed by the study of Zeng‘s group that they

used beta distribution to model the data distribution of MHC-peptide binding affinity
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for MHC class | [178]. Moreover, the beta model is the most flexible distribution
shapes depending on different combinations of the parameters of o and  [149]. As
the beta mixture was used to model the data distribution of predicted scores, thus, the
EM algorithm with a method of moments was implemented for estimating parameters

of a beta mixture distribution.

The study of parameter estimation using the EM algorithm with method of moments
for beta mixture model has been previously reported for the application in the field of
molecular biology [149]. The performance of the non-constrained model for the
predicted scores of 85 alleles (Figure 5.14) is not accurate for some data sets,
specifically, those data sets have been described as having unusual distributions in
Figure 5.11 e.g. B*14:02, C*04:01, and C*07:02. These data sets do not have
markedly clear separation of presumed true and false distributions indicating that the
parameters from indistinct separate data is not well estimated by the typical EM
algorithm. Thus, it is important to improve the model for unclear separate data
because the predicted scores in the overlapped area are very uncertain if they should
belong to true or false data. The EM algorithm was then modified by constraining the
estimated parameters of false distribution with the ranges of a, and S, calculated
from predicted scores of random data with different sizes and peptide lengths for 85
alleles. The restriction causes the false data to be well captured that might
consequently forces the true data to be correctly modelled. That assumption is
supported by the results in Figure 5.17 demonstrating that the constrained model has
obvious improvement for the unclear separate data sets that are not correctly
estimated by the non-constrained model. In practice, these two constraints mean that

when the algorithm detects evidence a very large imbalance, in either direction (i.e. all
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true or all false), the beta 1 or beta 2 is correctly fitted to the appropriate distribution.
Since this developed model was built by relied on the predicted scores from
NetMHCpan4.1, thus the application of this model is available for MHC types
supported in NetMHCpan4.1, which cover for 2,915 alleles for HLA-A, -B, and -C

[102].

The global FDR can describe the error rate that accumulates in the selected binding
peptides from the prediction across the whole data set, while PEP values can describe
a local false probability of an individual peptide in the data set. The results
demonstrated that some data sets might get over 10% FDR when using the 2% rank as
a threshold, which might be too high risk to control false positives (Figure 5.24A). In
practice, the FDR observed is dependent upon the allele selected, as well as the actual
(unknown) count of true positives in the data, relative to false positives. Moreover,
there is variability in PEP values close to the 2% rank score. In some data sets the
predicted scores < 2% rank can have PEP values very close to 1, but in other data sets
the predicted scores > 2% rank have a PEP less than 0.1. Furthermore, the analysis of
predicted results for 55 alleles coming from MHCflurry discovered similar trends as
for NetMHCpan. This finding indicates that using only the predicted % rank for
thresholding might wrongly accept false binding peptides or miss some true binding
peptides in different cases, which cannot normally be differentiated straightforwardly.
The final implementation of parameter estimation model and FDR/PEP calculation
were built by a Python script, the software was named MHCVision, available at

https://github.com/PGB-LIV/MHCVision. In brief, MHCVision performs parameter

estimation using the EM framework for a two-component beta mixture model,

representing the distribution of true and false scores of the predicted data set. The
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estimated parameters are further used to calculate FDR/PEP of an individual peptide’s
predicted score. The input requires a column of predicted I1Cso scores, and the output
will return the estimate statistical values including FDR and true posterior probability
(a converse PEP, 1-PEP) for every predicted peptide in each data set for a specific
HLA allele. Moreover, the approach of the model was also extended to MHCflurry
because the performance of this tool has been reported as good as NetMHCpan [3],
users can opt to run with MHCflurry, the supported alleles are limited to 79. Finally,
for different downstream uses of peptide binding data, rather using solely the fixed
threshold as the predicted % rank to classify or prioritise binding peptides, this study
would recommend using MHCVision for calculation of FDR and PEP and selection
of appropriate threshold to reduce a risk of getting false positive and gain confidence
for those peptides that their scores might be determined as non-binders via 2% rank

threshold.

In conclusion, Results from Section 5.3 reports on the successful development of a
parameter estimation model for beta mixtures for predicted binding affinity scores,
and tested with data from 85 HLA alleles. The statistical values including FDR and
PEP of an individual predicted score can be computed from the best estimated
parameters derived from the beta parameter estimation model. The converse PEP
value, true probability, of an individual predicted score is promising for prioritisation

of peptides. The software was implemented and deposited at https://github.com/PGB-

LIV/MHCVision.
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6.3 Immunogenicity predictor developed by the Random Forest model

The determination of immunogenicity for MHC presented peptides aims to identify
short peptides that can activate T cell response, either CD4+ or CD8+ T cells.
Identification of immunogenic peptides is of great interest for immunology research
such as understanding disease etiology, monitoring of immune response, or designing
epitope-based vaccine. For neoantigen-based cancer vaccine development, the
identification of immunogenicity is essential for the selection of true neoantigens to
reduce the risk of getting a false positive and thus help to increase the success rate of
neoantigen-based cancer vaccine therapeutic. Nevertheless, the process of antigen
presenting and TCR recognition is highly complicated, the precise mechanism of
binding interaction between TCR and an MHC presented peptide has not been clearly

revealed.

Previous studies have been studied importance characters of amino acids and
positions in immunogenic peptides. Those studies reported that the physicochemical
property of amino acids corresponding to size, hydrophobicity, entropy, polarity, and
binding interaction are associated with the preference of TCRs [113, 130, 142]. Those
properties were applied for amino acids in a peptide sequence to create a set of
features for building a prediction model with sequence-based learning. The existing
models showed the capability to distinguish immunogenic peptides from non-
immunogenic peptides with moderate performance, the reported ROC score is
approximately 0.75 (0.65 and 0.78 for Immunogenicity and INeo-Epp, respectively)
[130, 142]. An antigen or a peptide that can elicit an immune response must be a
foreign substance to the host immune or can be recognised as non-self by the host’s

immune system. Since during T cell development, those T cells who have a strong
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binding to self-peptides are eliminated, the negative selection results in a population
of T cells that promptly bind to non-self antigens [5]. Thus, the properties of
foreignness to self of input peptides were utilised as features for training the

immunogenicity classification model.

Initially, 182 features were used to build the model, the feature importance analysis
was found that the summation physicochemical property of all amino acids in a 9mers
peptide and a BLAST score feature have the top ranks compared to others. However,
the individual importance values were very low indicating a small contribution from
many features, likely highly correlated with each other, leading to a model that is
difficult to interpret. The approach of feature selection is commonly used for high-
dimensional data analysis to improve the model predictability by removing irrelevant
and redundant features resulting to improvement of learning accuracy, reducing
learning time, and generating understandable learning results [179]. Although, the
analysis from the feature selection experiment demonstrated that a subset from the
original feature set does not improve the AUC score, a small set of features might
reduce variation from irrelevant features and can simplify the model prediction that

can further elaborate which features mostly contribute to the model classification.

The result from benchmarking analysis showed that the Random Forest classification
model in this study outperforms Immunogenicity from Calis et al., this might be due
to update of training data, and the model from Immunogenicity masked the positions
corresponding to anchor residues this might miss signals to differentiate epitope and
non-epitope peptides [130]. Even though the model in this study did not mask position

related to MHC anchored residues, the training data set was cleaned to match a
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distribution of predicted ICso between positive and negative data to prevent bias from
binding affinity property. INeo-Epp is a current immunogenicity prediction tools
trained by only human peptides presented by HLA supertypes, and the AUC from
external validation from this study showed about 0.779. It is interesting that the AUC
score came from the model which removed peptides that have predicted % rank > 2.
Moreover, the most importance feature contributing to the model was found as % rank
from MHC-peptide binding prediction [142]. Therefore, it is likely that the reported
prediction statistics from INeo-Epp might be mostly contributed from distinguishing
binding and non-binding peptides but might not genuinely classify immunogenic and
non-immunogenic peptides. This also might explain why INeo-Epp yielded poorer
performance in our benchmark, with the data sets matched by MHC-peptide binding
affinity for both positive and negative data. Overall, even the model performance
from this work does not reach very high accuracy (e.g. >90%), it is still outperforms

existing tools.

Finally, this developed model returns probability scores, which are computed from the
average probabilities over the number of trees in the forest [180], instead of predicted
class of immunogenic or non-immunogenic. Probability scores provide several
applications such as ranking, thresholding with uncertainty predicted scores, and
deciding how to interpret the predicted result. Moreover, to prevent an inconsistency
from probability estimation for different input data sets in the future, the pseudo-
probability scores produced from the Random Forest model were transformed to
calibrated probability. The calibrated probability score allows for better comparison

across results from different prediction runs, and as shown in Section 5.4, can be
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combined straightforwardly with probability of peptide binding to develop a full

prediction pipeline.

In summary, the immunogenicity prediction model was developed using the Random
Forest algorithm, and the model was trained by physicochemical properties and
foreignness features corresponding to immunogenic and non-immunogenic peptides
derived from immunogenicity experiments. The developed model in this work
exhibits performance improvement over existing tools. Moreover, the predictability of
this model is independent of MHC-peptide binding affinity. Thus, this predictor
should truly contribute to distinguish epitopes and non-epitopes relying on characters
of T cell preference. To apply the immunogenicity prediction for neoantigen
selection, the integration of ability of MHC-peptide binding obtaining from Section
5.2 should be combined to immunogenic probability scores, which is discussed in the

following section.

6.4 An implementation of MHCVision and Immunogenicity predictor for
creating a pipeline for ranking predicted neoantigens

Identification of neoantigen from NGS data utilising the approach of bioinformatics is
a complicated task involving several processes of biological sample preparation,
bioinformatic analysis of NGS data, computational prediction, and candidate
neoantigen selection. Most efforts of neoantigen prediction focus on a strength of
MHC-peptide binding affinity using MHC-peptide binding prediction tools to exclude
non-binding peptides. Some predictions also incorporate the biological processes of
antigen processing including proteasomal cleavage e.g. NetChop [181] and peptide

transports efficiency e.g. NetCTL [182] , or a stability between peptides and MHC
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molecules e.g. NetMHCStab [138], those information are expected to help to rule out
false binding peptides. It has been reported that about thousands of somatic mutations
are identified in most neoantigen studies, and hundreds of peptides are predicted as
MHC binding peptides, however, only a handful are found to elicit T cell response
[183]. Therefore, there is a high risk to get false positive neoantigen if the selection
method relies on MHC-peptide binding. Even MHC binding and antigen processing
are necessary process for being neoantigens, they might not be sufficient for
determining true neoantigen because an ability of immunisation is obligatory for
being an epitope. The final probability from the pipeline in this study is the
combination between the same weight of scores from true MHC binding probability
and immunogenicity probability, which can be served as ranking scores that can help

users to rank candidate neoantigens and make a short list from the top rank scores.

Moreover, the expression of genes that neoepitopes originate from is the most
essential for neoantigen based cancer vaccine therapy in practice because it is
meaningless to inject non-expressed peptides to cancer patients. However, RNA
expression is not included in the final probability produced by this current model
because gene expression levels is personalised data that is specific for an individual.
The major limitation for building a model with the prediction of gene expression is
RNA level is dynamic and highly tissue specific, which means that different types of
cancer or different stages of the same cancer types might have different sets of gene
expression. Thus, for the best result with using MHCVision-RF for neoantigen
identification, users can apply gene expression levels, e.g. TPM > 1 is typically used
as a threshold for gene expression, to rule out non-expressed peptides that have high

final probability scores so that could reduce a risk for getting false neoantigens.
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The benchmarking analysis with existing tools that provide prioritising scores for
neoantigen identification have not done yet in Section 5.4 because the complete of
WES and RNA sequencing data as well as the experimental validation are needed for
the comparison analysis. A benchmark analysis would require using the raw FASTQ
data to control pre-processing steps i.e. sequence alignment, variant calling,
quantification of transcripts, and HLA genotyping to ensure that the quality of an
input data is same for any software. Besides genomic and transcriptomic data, the
experiments of T cell reactivity are necessary to validate the immunogenicity of
selected candidate neoantigens. The clinical study of neoantigen based cancer vaccine
is ongoing at Dr. Trairak Pisitkun’s research centre (CUSB), Chulalongkorn
University. Therefore, once the complete data from experimental could be accessed,
the comparison analysis between MHCVision-RF and exiting pipelines will be

performed and published, if results are encouraging.

In summary, the MHCVision-RF pipeline was built from the integration of
MHCVision and the immunogenicity prediction model. Scores from those two models
were multiplied to produce a ranking score that can contributes to MHC-peptide
binding and immunogenicity of each predicted peptides. The capability of ranking
scores produced by this software was validated with data from published studies, and
those ranking scores can differentiate data between positive and negative class.
Finally, the source code of MHCVision-RF was implemented and available at

https://github.com/PGB-LIV/MHCVision-RF
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6.5 General Discussion

Selection of candidate neoantigens is a crucial step to enable the usage of neoantigen
based cancer vaccine in clinical practice. There are several factors related to
biological events including antigen processing, MHC-peptide binding, and T cell
recognition that must be carefully considered to determine whether a candidate
peptide could be a neoantigen. At present, computational methods typically exploit
the prediction of binding affinity between MHC molecules and peptides as the
primary judgment to distinguishing putative neoantigens from non-neoantigens. The
precision and accuracy of MHC-peptide binding affinity prediction is therefore
important for neoantigen identification. Although, the current benchmark of HLA
class I binding prediction results showed the best performance of 90% sensitivity and
98% specificity, there remains a high risk of getting false positives if an inappropriate
threshold is used, and prior to this work, we are now aware of a straightforward
method for quantifying this phenomenon. FDR is an acceptable statistical value to
control false positive rate in predicted results. The study in Section 5.2 is a novel
perspective in the field of MHC-peptide binding affinity prediction. Instead of
focussing on the improvement of MHC-peptide binding prediction algorithms, the
model developed in Section 5.2, MHCVision, emphasised providing statistical values,
global and local FDR, for predicted scores coming from MHC-peptide binding
prediction tools. The statistical values produced by MHCVision can serve as
additional information to facilitate users to define binding peptides. Moreover, the
performance of MHCVision is independent from the accuracy of prediction tools
because this model estimates global and local FDRs from the data distribution of the

predicted result. Apart from neoantigen selection, MHCVision can be further applied
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for any kind of works related to the prediction of MHC-peptide binding affinity. It is
worth stating potential limitations and caveats to this work. First, we have tested the
algorithm under a range of scenarios, where we believe we have good control of the
ground truth i.e. through mixing true (MS identified peptides) and false (random) data
points in different ratios. However, within both sets there is potential for
imperfections. Within MS data sets, as we comment in Section 5.2, it is possible that
some incorrect peptides have been identified, which would not be true positives.
Similarly, it is quite possible that some proportion of random peptides are indeed true
binders. Nevertheless, MHCVision was not trained on the labels per se, these were
used to generate the types of distribution shapes we expect will be encountered in real
data sets. It is of course possible that certain peptide set — allele combinations could
produce completely unexpected data distributions which we have never seen before,
e.g. multi-modal, which might cause some inaccuracies for MHCVision prediction.
We have tested the performance of MHCVision with NetMHCpan and MHCflurry,
two of the best performing and most popular binding algorithms, but we cannot
guarantee performance with other predictors, and the model would likely need
retraining for MHC Class Il prediction, which is a more complex problem. Further

detail on how this could be done is given below in Future Work.

As mentioned above, there are several factors involved in biological events that are
normally used to consider for neoantigen identification. Beyond MHC binding ability,
an ability for being T cell epitopes is a critical property to be a neoantigen.
Determining T cell epitopes is very challenging because of the extreme diversity of
TCRs and the limitation of T cell epitope data. T cell epitopes obtained from T cell

assays experiments deposited in databases do not fully cover all types of TCRs
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diversity. Thus, the immunogenicity prediction model developed in Section 5.3 is not
a completely novel framework, since the database of physicochemical properties of
amino acids for generating a set of features and data for training the model have been
also used in previous studies. However, a new aspect of this developed model is a
concerning the bias from binding and non-binding classification. T cell epitopes must
be MHC binding peptides, thus T cell epitopes derived from experiments mostly have
a good MHC binding affinity. In contrast, non-epitopes that have a negative result
from T cell reactivity assays might not be able to bind to MHC molecules, meaning
they are not presented to T cells. If epitope and non-epitope data are used as positive
and negative classes to train the model without calibrating the MHC binding affinity,
it might be possible that the model will learn binding and non-binding properties from
amino acids in a peptide instead of properties for T cell recognition. The
standardisation of positive and negative data for model training in Section 5.3 can
help to rule out that bias, and build on the fact that very extensive work has already
been done to build excellent classifiers for MHC-peptide binding. Even though the
performance of this developed model might not reach 90% accuracy, it still
outperforms the existing tools. There are several ways in which to improve this
immunogenicity prediction model in the future. This model was built from training
data that does not consider HLA allele specific peptides, and trained only for peptides
with nine amino acids in length. In this thesis, the model was build with an intention
to be assembled with MHCVision to produce a probability that describe the ability for

a peptide to be a strong MHC binder and immunogenic.

The integration of MHCVision and the immunogenicity prediction model was

implemented to build a pipeline named MHCVision-RF in Section 5.4. The final
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probability produced from this pipeline is from the combination of true MHC binding
probability and immunogenicity probability. As described above, MHC-peptide
binding scores of the training data for the immunogenicity prediction model were
standardised between epitopes and non-epitopes. Hence, it can ensure that a combined
score is generated from the independent scores from MHC binding and
immunogenicity probability. Although, a probability provided from MHCVision-RF
does not describe whether the peptide can be expressed in protein level, users can
manually apply the RNA expression levels to consider in neoantigen selection or
prioritisation to get the best results with low risk of getting false neoantigens. At the
moment we do not have any sufficiently large training data to know how to calibrate
or combine the immunogenicity/binding probability with gene/protein abundance
data, in terms of the importance of contribution from each. This must be an area for

future focus.

CHAPTER 7

CONCLUSION AND FUTURE WORKS

The aim of this chapter is to summarise the content of this thesis, extend the general
discussion of the models performed in each result section and describe a perspective
of future work related to this current research. Finally, general conclusions of this

work are summarised at the end.

7.1 Summary of thesis
The work carried out in this thesis can be summarised in three main components: first,

the development of the model for estimating global and local FDR for MHC-peptide
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binding affinity predicted data; second, the development of a prediction algorithm for
determining a probability of immunogenicity, and third, the integration of those two
models to produce a pipeline that provides a probability of true MHC binding
probability and T cell recognition probability. The following presents a summary of

the conclusions from each result section.

Section 5.1: The study of neoantigen prediction using existing bioinformatics

software and public MHC-peptide binding affinity prediction tools

This section demonstrated the practicability of neoantigen identification using the
approach of bioinformatics and prediction algorithms. Moreover, the concept of
protein structural analysis using MD simulation technique was performed, and the
limitations of this method were reported. The analysis of random background and
false positive rate of the outputs produced by MHC-peptide binding prediction
algorithms (NetMHCpan and MHCflurry) were performed to gain a better
understanding of the behaviour of those prediction tools. The analysis summarised in
this section is the rationale for the study of the improvement of criteria for neoantigen
selection on the basis of predicted MHC-peptide binding affinity and

immunogenicity.

Section 5.2: The development of a model to estimate statistical properties from

MHC-peptide binding affinity prediction

This section initially described the background of statistical data distribution models
and the mathematical context of the EM algorithm. This section described the best fit
of beta mixture distribution model for predicted data produced by NetMHCpan. The

modification of the EM algorithm with the method of moments for beta parameter
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estimation was also included in this section. The application of this developed model,
named as MHCVision, for global and local FDR estimation was demonstrated at the

end of this section, and these results have been published in Bioinformatics [184].

Section 5.3: The development of an immunogenicity prediction model for
distinguishing immunogenic and non-immunogenic peptides using Random

Forest

In this section, the development of the model for immunogenicity prediction was
described. This section included the explanation of features related to T cell
preference properties and the Random Forest algorithm that is used for building the
immunogenicity prediction model. The performance and comparison analysis of this

model against existing tools was demonstrated at the end of this section.

Section 5.4: A pipeline for ranking predicted neoantigens using the estimation of

local FDR and immunogenicity prediction

The assembly of MHCVision from Section 5.2 and the immunogenicity prediction
model developed in Section 5.3 was performed in this section, called MHCVision-RF.
A generation of the final probability from a combination of true MHC binding
probability and immunogenicity probability was explained. In addition, the code
implementation and workflow of this pipeline were also described. Finally, the
assessment of a separation ability of the model to distinguish neoantigen and non-

neoantigen from published data sets was demonstrated in the final part of the section.
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7.2 General conclusion

Vaccines are a type of immunotherapy, which normally protect people from diseases.
They are generally made from weakened or innocuous versions of pathogens. When
people get vaccinated, their immune system will be stimulated, and naive T cells will
be active and develop to memory T cells specific to those pathogens. With the same
concept of immunostimulants but unlike general vaccine that are used for protection,
cancer vaccines are designed for people who already have cancer. Cancer vaccines are
typically designed from a part of protein particularly expressed in cancer cells but not
expressed in normal cells, i.e. neoantigens. Once cancer patients get a vaccine
formulated from neoantigens, the immune system will recognise those neoantigens to
attack and destroy the cancer cells that carry those neoantigens. The approach of
personalised neoantigen based cancer vaccines might be feasible for various types of
cancer compared to other cancer immunotherapies, such as monoclonal antibodies or
CAR T cells, because generation of neoantigens relies on the individual genetic
background. Moreover, the potential of this approach on neoantigen-specific T cells
activation provides the development and proliferation of memory T cells that might

achieve long-term protection against disease recurrence.

In general, the processes for obtaining a list of neoantigens based on NGS data
primarily exploit software packages in bioinformatics and computational methods.
One of the limitations of peptide-based cancer vaccines is that a small handful of
peptides are practically selected for the step of peptide manufacture and vaccine
production due to cost and time effective. The current criteria for neoantigen selection
utilising the information provided by the prediction algorithms might yield too many

numbers of peptides to proceed in vaccine production. This thesis was mainly
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focussed on the development of the models to facilitate the improvement the criteria
for selecting and prioritising potent neoantigens to make a short list of candidate
neoantigens with low risk of getting false positives. In this thesis, the two models that
contribute true MHC binding probability and immunogenicity probability were
successfully developed, and the integration of those two models provided a pipeline
producing the final probability that describe the ability of MHC binding and a potent
for being T cell epitopes. Finally, the pipeline developed in this thesis can provide a
probability score that can described a potent for being real neoantigen. The software
and the source code of MHCVision and MHCVision-RF are freely available at

https://github.com/PGB-LIV/MHCVision and https://github.com/PGB-

LIV/MHCVision-RF, respectively.

7.3 Future work
The following topics are projects that could extend from the current works in this

thesis and should be performed in the future.

7.3.1 Extensibility of MHCVision model

The current version of MHCVision is available for predicted data produced by
NetMHCpan and MHCflurry. Extending the application of MHCVision for other
MHC class | prediction tools should be further performed to give more flexibility for
users. The shape of data distribution produced from other prediction tools must be
explored, if they can fit well to beta mixture distributions, it could be possible to use
the current version with those tools. However, if their data distribution is not well
modelled by a beta mixture distribution, the data distribution model and constrained

values might need to be modified. Furthermore, the development of the MHCVision
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for MHC class 1l binding prediction also should be perform for the next version. To
extend the MHCVision algorithm to MHC class 11, the data sets of natural MHC I
presented peptides from MS analysis or other biological experiments must be
collected for the learning phase, and the core concept of the algorithm of the current
version with minor modification could apply to the distribution of predicted data

produced from MHC class I1-peptide binding affinity prediction tools.

7.3.2 The development of the automated software for neoantigen identification

by assembling a package of bioinformatic software to MHCVision-RF

To make MHCVision-RF more practical for clinical research or application,
automated software with the upstream steps of data pre-processing and downstream
for neoantigen prioritisation should be assembled. The steps of pre-processing data
include WES data analysis, variant calling, HLA-genotyping, and short mutated
peptides extraction, whereby users could opt to provide the input file either a raw
FASTQ format or a variant calling file format. The main prediction part will take a
list of short mutated peptides and patient’s HLA alleles to the MHC-peptide binding
prediction tool, then MHCVision-RF will compute the final probability of true MHC
binding and T cell recognition for each peptide. If the RNA sequencing data is
available, user could provide a raw FASTQ file or a level of transcripts file for the
input parameters, the expression level of genes that mutated peptide originate from
would be considered together with the final probability from MHCVision-RF to
prioritise or select candidate neoantigens. Finally, the output would return data in a
tabular format containing the multiple scores of each peptide, which are predicted

binding affinity scores, true MHC binding probability, immunogenicity probability,
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and a final probability of MHC binding and T cell recognition as well as gene
expression level (if applicable). The installation of the automated software pipeline is
planned as a step of neoantigen identification in future projects on the development of
neoantigen based cancer vaccine at Chulalongkorn University to test the workability

of this software in clinical level.
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