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CHAPTER 1 

 INTRODUCTION 

A tumour-specific, neoantigen-based cancer vaccine is a potentially powerful 

treatment option, which utilises unique mutated peptides from tumour cells to boost 

the immune response and selectively attack cancer cells. Thus, characterisation of the 

specifically targeted peptides that can be selectively recognised by the immune 

system is essential for the development of a personalised cancer vaccine. The 

identification of neoantigens commonly uses data from next generation sequencing 

technologies and computational prediction. However, a major problem in neoantigen 

prediction is high risk obtaining false positives i.e. predicting peptides as vaccine 

candidates, which do not initiate an immune response in vivo, leading to poor 

outcomes in clinical research and practice. With continuous developments in 

peptidome profiling techniques, recently published tools use the integration of 

peptidome data and binding affinity data as training data. The benchmarking for 12 of 

the most popular peptide MHC I binding predictors has recently been performed, they 

have reported that NetMHCpan 4.0 and MHCflurry were determined to have the 

highest accuracy in discrimination of binders and non-binders [1]. Several neoantigen 

prediction pipelines leverage these tools to predict the binding affinity between 

peptides and MHC, the prediction results are reported as a predicted binding affinity 

(IC50) in nanomolar (nM) unit and the percentile rank (% Rank) [2, 3]. To distinguish 

binding peptides from non-binding peptides, most neoantigen studies use a hard 

threshold e.g. using an IC50 value < 500 nM as a universal threshold to classify that a 

peptide is a binder. In fact, the NetMHCpan documentation recommends using the 
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percentile rank (calculated as the proportion of random peptides passing the given 

threshold) rather than the predicted binding affinity, i.e. using < 2% rank as a 

threshold. However, MHCflurry did not perform analysis to select the threshold for 

the percentile rank. Moreover, neither tools suggests a method for converting the 

percentile rank to a global statistic, such as false discovery rate (FDR) or a local 

peptide-level statistic such as the posterior error probability (PEP) that a given peptide 

is a binder. To apply the 500 nM to cut off the predicted results for any MHC 

molecules might not appropriate for some types since the different MHC molecules 

have different predicted binding affinity scores especially those with lack of data 

training. Therefore, it is important to refine the method to accurately classify binding 

and non-binding peptides because it is the first step of neoantigen selection that is 

critical for further downstream steps of prioritisation and selecting candidate 

neoantigens to synthesise peptides and make a vaccine for further research or clinical 

usage.  

In this thesis, the data distribution of MHC-peptide binding affinity coming from 

NetMHCpan and MHCflurry was explored to find the most suitable statistical 

distribution model. Then, a model, called MHCVision, was developed using the 

integration of mathematical models including the beta distribution model and the 

approach of Expectation Maximisation (EM) algorithm. The model can estimate a 

probability for being false positive (FDR, PEP scores) for each predicted score from 

MHC-peptide binding prediction tools including NetMHCpan 4.0 and MHCflurry. 

The script of MHCVision was implemented using Python, as a command line 

application. Nevertheless, the predicted binding affinity score is necessary for 

neoantigen prediction, it might not be sufficient to confirm peptide’s immunogenicity. 
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In practice, it might not be possible to use all predicted binding peptides to produce 

the vaccine in clinical stage. Hence, determining the immunogenicity of predicted 

peptides is also essential for neoantigen prediction. Another prediction model for 

classifying immunogenic and non-immunogenic peptides was developed using the 

approach of the Random Forest algorithm. The classification model was trained from 

a set of features including physicochemical properties of amino acids in immunogenic 

and non-immunogenic peptides and a similarity between T cell epitopes and the host 

proteome. The model can predict the probability for each peptide to be immunogenic. 

In the final phase of this thesis, a pipeline for neoantigen prioritisation was 

implemented by integrating MHCVision and Immunogenicity prediction model. The 

pipeline returns a final probability from the multiplication of true MHC binding 

probability (1-PEP) and immunogenic probability. The pipeline can provide 

probability scores related to MHC binding and immunogenicity, which could help to 

improve the selection criteria for ranking or selecting candidate peptides without a 

high risk for false positives.   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

4 

CHAPTER 2  

OBJECTIVES 

The main objective of this research was to develop models that help to improve the 

criteria to select and prioritise candidate neoantigens based on the prediction of MHC-

peptide binding affinity and immunogenicity prediction. This research work was 

specifically aimed to develop new software that can give an accurate probability for a 

peptide to be a genuine neoantigen.  

2.1 Global and local false discovery rate (FDR) estimation model for MHC-

peptide binding affinity prediction 

The ability of MHC binding is widely used to determine neoantigen since MHC-

peptide presentation is a necessary step for T cell recognition. However, the existing 

MHC-peptide binding prediction tools provide a predicted binding affinity or an 

estimated score relying on distribution of pre-set of negative data. The uncertainty of 

neoantigen prediction based on insufficient statistical values is discussed in Section 

5.1. Therefore, the first goal of this research was to develop a model that can estimate 

global and local false discovery rate for an individual predicted MHC-peptide binding 

affinity score. This work is summarised in Section 5.2. 

2.2 MHC class I immunogenicity classification model 

Since a key to identify if a peptide is neoantigen it must be an immunogenic epitope. 

Even MHC binding is a necessary step for T cell recognition, but it is not sufficient to 

determine whether an MHC presented peptide is an immunogenic peptide. The 

criteria for candidate neoantigen selection performed in Section 5.1 rely not only 
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MHC-peptide binding affinity, but also consider other biological factors such as gene 

expression, mutational site, and orientation of side chain of mutated amino acid. 

However, they do not have a statistical basis to determine immunogenicity. Thus, the 

second goal of this research was to build a model to classify peptides to be epitopes or 

non-epitopes using a framework of machine learning, this work is summarised in 

Section 5.3. 

2.3 The pipeline for ranking HLA class I neoantigens based on true MHC 

binding affinity and immunogenicity prediction 

To serve the main objective of this research, the final goal was developing a new 

software that can produce accurate statistics for neoantigen selection and 

prioritisation, built by integrating models developed in this thesis, and summarised in 

Section 5.4.
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CHAPTER 3  

LITERATURE REVIEWS 

3.1 T cells and Major histocompatibility complex (MHC) proteins 

The basic context of the immune system is required for understanding the following 

details in this chapter. Therefore, in this section the background of the adaptive 

immune system involving T cells and MHC molecules is briefly described and 

referred to in the following sections. 

3.1.1 The diversity of T cell receptors 

T lymphocytes or T cells are one of the important white blood cells that play a crucial 

role in the adaptive immune response. They act as the primary effectors for cell-

mediated immunity to confer response specificity using surface protein receptors to 

recognise foreign antigens [4]. There are two main classes of T cells, which are 

cytotoxic T cells (CD8+ cells) and helper T cells (CD4+ cells). Effector cytotoxic T 

cells directly kill cells that are infected with a virus or some other intracellular 

pathogens. In contrast, effector helper T cells help to stimulate the response of other 

cells which mainly are macrophages, B cells, and cytotoxic T cells [5]. A critical step 

in T cell development is making a functional T cell receptor (TCR). A mature T cell 

can have incredible diversity of TCRs that can react to a variety of random patterns, 

allowing the immune system to recognise many different types of pathogens. Each T 

cell bears about 30,000 antigen-receptor molecules on its surface, each receptor 

consisting of two different polypeptides chains including 𝛼 and 𝛽 chains. TCRs are 

able to bind such a wide variety of peptide-MHC complexes due to genetic 
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recombination of gene segments creating 𝛼 and 𝛽 chains [6]. Both 𝛼 and 𝛽 chains 

have two regions including an amino-terminal variable (V) region and a constant (C) 

region, linked by disulfide bound. The V regions are encoded by separated gene 

segments, which are variable (V), diversity (D) and joining (J) gene segments. A 

random recombination of V, D, J gene segments generates high diversity of a V-

region exon. The TCR 𝛼 locus contains V and J gene segments while the TCR 𝛽 

consists of V, J and D segments. For the 𝛼 chain, a 𝑉𝛼 gene segment rearranges to a 𝐽𝛼 

segment to create a V-region exon. Transcription and splicing of 𝑉𝐽𝛼 exon to 

𝐶𝛼generates the mRNA that is translated to yield the TCR 𝛼 chain protein. 

Rearrangement of three gene segments (𝑉𝛽 , 𝐷𝛽 , and 𝐽𝛽) of the 𝛽 chain generates a 

functional 𝑉𝐷𝐽𝛽 of V-region exon that is transcribed and spliced to join to 𝐶𝛽, the 

resulting mRNA is translated to yield the TCR 𝛽 chain protein [5]. Moreover, the 

combination of TCR 𝛼 and TCR 𝛽 creates more diversity of TCR proteins, those 

recombinant events result in an estimated 1015 possible different TCRs [7]. 

3.1.2 Major histocompatibility complex (MHC) 

MHC molecules are cell surface proteins, their main function is to bind peptide 

fragments and present them for recognition by T cells. There are two major types of 

MHC proteins, which are MHC class I and class II according to types of T cells that 

are specific to each class. Only immune cells such as monocytes, B lymphocytes, 

antigen presenting cells (APCs) which are macrophages and dendritic cells (DCs), and 

epithelial cells can express both type of MHC molecules, while generally somatic 

cells can express only MHC class I molecules [8]. The human MHC is called the 

human leucocyte antigens (HLA) that maps to the short arm of chromosome 6 
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consisting of three regions including class I, class II, and class III. However, only 

class I and class II regions encode HLA molecules and function in the regulation of 

immune response [9]. For human MHC, the class I region consists of the classical 

HLA-A, HLA-B, and HLA-C genes, and their encoded proteins present peptides that 

can be recognised by cytotoxic CD8+ T cells. The class II region contains DR, DP 

and DQ gene families that can encode human MHC class II molecules including 

HLA-DRA, HLA-DRB1, HLA -DRB3, HLA-DRB4, HLA-DRB5, HLA-DQA1, 

HLA-DQB1, HLA-DPA1 and HLA-DPB1. Peptides displayed by MHC class II can 

be recognised by CD4+ T cells [10]. The diversity of human MHC alleles is high due 

to extensive polymorphism at most loci. The latest update of the international 

ImMunoGeneTics information system (IMGT) database in August 2019 contains 

24,093 HLA alleles including 16,943 alleles of HLA class I, and 6,650 alleles of HLA 

class II [11]. Many of the alleles are exceptionally rare, carried only by a few 

individuals, but 1,122 alleles of  HLA-A, -B, -C, -DRB, -DQA, -DQB, -DPA, and -

DPB loci are common and well-documented, 415 alleles of these alleles were 

identified as “common” (having known frequencies) and 707 as “well-documented” 

base on HLA genotyping  observations and available HLA haplotype data [12].  

The standardised nomenclature system is typically used to define HLA polymorphism 

that refers to the multiple variations of allele loci. The notation system was initially 

designed based on HLA typing methods to detect and define HLA polymorphism 

such as serologic and cellular assays to DNA sequencing [13]. The current structure 

of nomenclature is a combination of alphanumeric characters and an asterisk (*) 

symbol that divides a name into two main components including the name of the 

locus i.e. HLA-A, -B, -C, -DRB, -DQA, -DQB, -DPA, and -DPB and the DNA 
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sequence variant (Figure 3.1). Each HLA allele name has a unique number 

corresponding to up to four sets of digits separated by a colon (:) symbol. All alleles 

are named with at least four digits which cover the first two sets of digits. The first set 

described the encode HLA allele family which corresponds to the antigen group e.g. 

A*02, and the next set of digits after the first colon are used to define the DNA 

sequence variant that change in the amino acid sequence of the encoded protein which 

is usually assigned in a consecutive numerical order e.g. A*02:101 [14]. Longer 

names containing Field 3 or Field 4 are assigned if necessary, but the variations do not 

alternate at the protein level. 

 

Figure 3.1 Structure of the nomenclature for HLA allele with four fields (adapted 

from http://hla.alleles.org). 

http://hla.alleles.org/
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3.1.3 MHC antigen processing and T cell recognition 

MHC class I and class II have a similar function for short peptide delivery and 

presentation on cell surface. The difference between those two classes is the source of 

peptides for a step of antigen processing. Proteins that are processed in the cytosol 

such as intracellular proteins, tumour proteins, released proteins from viral infection 

or proteins from transplantation, are fragmented in the cytoplasm and presented via 

MHC I molecules. Cytosolic proteins are degraded by the proteasome into short 

peptides, then, those peptides are delivered to the endoplasmic reticulum (ER) via ER 

protein membrane, transporter associated with antigen processing (TAP) [15-17]. In 

the ER, peptides with specific length of 8 to 11 amino acids are potentially bound to 

the empty MHC I molecules. The complex of MHC I-peptide complete MHC protein 

folding, and the complete MHC I-peptide complexes are released from the ER and 

transported to the cell surface to present a peptide to CD8+ T cells [18] (Figure 3.2, 

top panel). MHC class II proteins can present longer peptides (11-30 amino acids) 

than those presented by MHC class I molecules[19]. MHC class II molecules 

generally present peptides derived from the endocytic processing pathway, which are 

extracellular proteins or intracellular proteins degraded via the endosomal pathway 

[20]. The protein degradation is performed through the endosomal/lysosomal antigen-

processing compartment, when the complex of MHC II molecules with the invariant 

chain (li) combine to that compartment, the mixture of proteases in the vesicle 

degrade the invariant chain resulting in the complex of MHC II and a fragment of li, 

called class II-associated invariant chain peptide (CLIP) [21, 22]. The enzyme called 

HLA-DM empties the MHC II groove by removing CLIP leading to the binding of 

MHC II and a peptide. The complex of the MHC II-peptide is moved to the cell 
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surface by vesicular transportation for CD4+ T cells presentation [23, 24] (Figure 3.2, 

bottom panel). T cells recognise a peptide when bound to an MHC molecule. The 

TCR interacts with a ligand by making contacts with both MHC molecule and peptide 

by their TCRs, most predominantly via complementarity determining region 3 

(CDR3) loops (Figure 3.3) [25].  

 

Figure 3.2 The antigen processing and MHC presentation pathways of MHC class I 

(top) and class II (bottom) [5].
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Figure 3.3 The 3D-structure of binding interaction of T cell receptor and the complex 

of HLA-A*02:01 presented peptide [26]. 

3.2 An introduction of Tumour immunology and cancer immunotherapy 

Cancer immunotherapy has been developed during recent decades and has come to be 

a powerful approach for several types of cancer and also promising for treatment of 

the late stage or metastatic cancer. In contrast to the other therapeutic concepts, 

immunotherapy exploits the immune systems to attack cancer cells based on 

complementation or stimulation of the immune system specific for the individual [27]. 

As a result, this approach is a promising strategy to deal with the heterogeneity of 

cancer. The principal of cancer immunotherapy is the concept of immune surveillance 

of tumours, which is the ability of the immune system to specifically identify and 

eliminate cancer cells that contain molecules or expressed antigens which never exist, 

or show aberrant expression, in normal cells. As a consequence, the lack or inhibition 
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of immune surveillance due to an immune evasion of tumour cells can develop the 

cancer progression [28].Therefore, this therapeutic approach is intended to restore the 

ability of the immune system to combat cancer. 

3.2.1 Immune surveillance of cancer and cancer immunoediting  

There are three primary roles of preventing tumours through the function of the 

immune system. The first one is protecting the host from virus-induced cancer by 

suppressing viral infection processes or destroying infectious cells. Second, the 

balance of the immune system can regulate the immune response to avoid the 

inflammatory environment itself causing tumourigenesis. The third is the immune 

system can detect cancer cells on the basis of the presence of tumour specific antigens 

or molecular biomarkers indicating aberrant cells and eliminating them before they 

can be harmful. The last one is the role of immune surveillance. The concept of 

immune surveillance has been stated since the late 1950s, where the evidence was 

presented by transplant models that the host rejected tumour tissues, but normal tissue 

transplantation can be accepted, suggesting that the tumour-specific antigens can 

trigger a self-immune system [29]. The host immune system can respond to the 

appearance of cancer cells by the process of antigen presentation as described in 

Section 3.1.3. Once APCs process and present tumour-specific antigens to T cells, 

mature T cells survey and seek out tumour cells who express those specific antigens 

and eliminate them. Even in the presence of immune system functions, cancer cells 

still develop and do harm - the concept of cancer immunoediting has been developed 

since 2002 to explore the relationship between cancer development and the immune 

system that can explain how tumour cells evade from immune surveillance [30]. 
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The concept of cancer immunoediting consists of three processes (Figure 3.4). First, 

the elimination process takes in the concept of immune surveillance, growing of 

aberrant or transformed cells induce the inflammatory environment to recruit innate 

immune cells (NK cells, macrophages, and DCs) to the localisation site. The attack 

from the innate immune system will produce cytokines such as Interferon gamma 

(INF-γ) and several chemokines, the secretion of INF-γ and chemokines induce anti-

tumour proliferation, apoptotic, and anti-angiogenetic mechanisms resulting in 

limiting cancer growth [31-33]. Then, debris from dead tumour cells are ingested by 

local DCs, that will process tumour associated antigens and present to naïve T cells in 

the lymph node. The mature T cells are effector cells, they away from the lymph node 

and go to the site of cancer cells and specifically recognise and eliminate cancer cells 

who harbour antigens that are presented by DCs. Second, the equilibrium process 

occurs based on natural selection, some cancer cells are eliminated, but those that 

have high genetic instability can generate new variants and harbour mutations that can 

cause escape from or resistance to the immune system. Third, in the escape process, 

cancer cells containing a high load of genetic mutations that survive immune 

surveillance (the elimination phase) can further develop cancer progression and cause 

detriment to the host body. From the concept of cancer immune editing, the clinically 

observable cancer disease indicates the failure of the natural immune system to 

combat cancer cells. Therefore, to exploit the immune system for effective cancer 

treatment, the natural immune response is needed to be re-established, which for the 

basis for the concept of cancer immunotherapy.
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Figure 3.4 The three phases of cancer immunoediting. (1) Elimination; innate and 

adaptive immune cells recognise and attack transformed cells to destroy them via 

cytokines secretion. (2) Equilibrium; if the immune system cannot completely 

eliminate transformed cells, tumour cells that have surviving tumour variants can 

resist the attack from immune cells. (3) Escape; Tumour cells that survive from 

immune surveillance can evade the immune system and develop the progression. 

3.2.2 The approach of immunotherapy for cancer treatment 

In the present, there are several types of immunotherapies for cancer treatment, those 

can either help the immune system to attack cancer cells or stimulate the immune 

response to be active and eliminate cancer cells. Currently, there are three major types 

of cancer immunotherapies which are the most promising and currently developing, 

which are checkpoint inhibitors, adoptive cell transfer, and cancer vaccines.  

a.) Immune checkpoint therapy 

Program cell death 1 (PD-1) or Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-

4) are co-stimulatory molecules expressed on the surface of T cells. They act to 

amplify the initial activating signals from the interaction between TCRs and MHC 
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presented antigens, the result from the signal amplification can activate T cell 

responses. To evade immune surveillance, tumour cells express the proteins e.g. 

program cell death 1 ligand (PD-L1) that can bind to those co-stimulatory molecules, 

the binding interaction can transmit the signal to stop the killing function of T cells 

[34]. To revive the activation of T cells, the approach of checkpoint inhibitors, which 

are an antibody-based treatment, is designed to block the binding of co-stimulatory 

molecules and their ligands expressed by tumour cells so that the killing function of T 

cells is re-active to eliminate cancer cells (Figure 3.5). CTLA-4 inhibitors is the first 

immune checkpoint inhibitor that has been approved by the US Food and Drug 

Administration (FDA) in 2011 for treatment of melanoma [35]. The first PD-1/PD-L1 

checkpoint inhibitors for oesophageal cancer was approved in 2014, and it has been 

now used for the first-line treatment of advanced non-small cell lung cancer [36]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

17 

 

Figure 3.5 Anti-PD-1 and anti-PD-L1 therapies for re-activation of inactive T cells. 

The T cell receptor can recognise antigen presented by tumour cells, but the 

interaction of PD-1 and PD-L1 inhibits T cell activation (top panel). The monoclonal 

antibodies that can specifically bind to PD-1 or PD-L1 can block the binding 

interaction between PD-1 and PD-L1 so that an unbound PD-1 molecule can 

reactivate T cell responses (bottom panel).
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b.) Adoptive cell transfer (ACT) 

The approach of adoptive cell therapy basically utilises T cells which can directly 

target the specific protein expressed on a patient’s cancer cells and kill them [37]. In 

practice, T cells are taken from a cancer patient’s own blood or tumour tissue, and 

those T cells that can specifically recognise expressed peptides on cancer cells’ 

surface are selected, or the protein receptors on T cell surface are engineered to make 

T cells more effective to target cancer cells. Then, the modified T cells are expanded 

in the laboratory to increase numbers and given back to the patient to attack cancer 

cells (Figure 3.6). The chimeric antigen receptor T cell (CAR T cell) therapy is the 

type of ACT which has been approved by FDA since 2017, and clinically used in 

lymphoma. CAR T cells target an antigen called CD19 which is especially expressed 

in patients with lymphoma [38].  

 

Figure 3.6 Adoptive T cells therapy. T lymphocytes are isolated from blood or 

tumour tissue of a cancer patient. T cells have been activated by tumour associated 
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antigens, T cell populations that have the desired T cell receptor specificity are 

selected and expanded. The selected T cells are then re-infused to a cancer patient.  

c.) Cancer vaccines 

Vaccines for cancer treatment are not the same as vaccination for disease prevention. 

Cancer treatment vaccine play a role with boosting the natural immune system to 

exterminate cancer cells. Cancer cells are genetically unstable, resulting in them 

harbouring numerous somatic mutations that are a source of molecules that normal 

cells do not have, called tumour specific neoantigens [39]. With the adaptive immune 

response, the effector T cells can be activated by recognition and interaction with 

antigens presented by MHC proteins. Since neoantigens are mutated peptides that are 

not self-antigens, those neoantigens are possibly be presented on cancer cell surface 

by MHC molecules and recognised by T cells. T cells will see them as foreign 

peptides resulting to activation of T cell responses and subsequently kill cancer cells 

who express those neoantigens [40, 41]. From this context, synthetic neoantigens can 

be given to the patient with cancer, the antigens will stimulate the immune system to 

target and destroy cancer cells who express neoantigens [42]. Cancer vaccines 

targeting neoantigens can be formulated via various types of vaccine such as nucleic 

acids (DNA or RNA vaccines), dendritic cells loaded peptides (DC-based vaccine), 

and synthetic peptide vaccine. 

3.3 An introduction of neoantigens in cancer immunotherapy 

As described in the previous section, neoantigens can boost the ability of endogenous 

T cells of cancer patients resulting to restoring of the immune system for attacking 

cancer cells. Several pre-clinical and clinical studies have revealed the potential of 

neoantigen based cancer vaccines for the inhibition of tumour growth and tumour 
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metastasis [43]. In this section, the generation of neoantigens from cancer cells and 

neoantigen-based cancer vaccines are further described. 

3.3.1 Arising of tumour specific neoantigens 

Epitopes that can activate host immune system leading to cancer rejection are possibly 

derived from two types of antigens, which are self-peptides that induce T cell 

tolerance, and the other type is the peptides that have never been expressed in the 

germline genome. The second type can be generated from either non-synonymous 

DNA mutations that arose during cancer development that solely create novel protein 

sequences that normal cells do not have, or viral peptides in virus-associated cancer 

types such as human papillomavirus (HPV) caused cervical cancer and Epstein Barr 

virus (EBV) associated cancer e.g. nasopharyngeal cancer. There are several studies 

that have exhibited the potential of immunogenicity and the ability of cancer 

suppression by neoantigens derived from non-synonymous somatic mutations 

indicating that the pool of neoantigens from non-synonymous somatic mutations can 

contribute to immunogenic peptides triggering T cell activation [44, 45]. According to 

antigen processing described in Section 3.1.3, neoantigens derived from somatic 

mutation have a chance to be presented by MHC molecules to present to T cells 

resulting the activation T cell killing function. 

3.3.2 Neoantigen-based cancer vaccines  

Initially, the approach of neoantigen-based cancer vaccines was not much preferred as 

a target for cancer immunotherapy because of the genetic diversity across different 

patients, thus, it is difficult to develop this intervention as a “one size fits all” 

approach. However, in recent years, a number pre-clinical and clinical studies have 
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been reported showing potential of neoantigen-based cancer vaccine in tumour 

destruction [46]. For developing the vaccination from antigens or deriving 

neoantigens, there are various types of vaccine formations including cell-based cancer 

vaccines, peptide-based cancer vaccines, and nucleic acids-based cancer vaccines 

(Figure 3.7). There are generally two types of cell-based cancer vaccines, which are 

autologous cancer cells and neoantigens loaded or transfected DCs. With the 

application of a DCs-based vaccine, DCs of an individual patient are isolated and 

loaded with synthetic peptides that are identified as neoantigens or transfected with 

DNA or mRNA translated neoantigens. Those neoantigens are processed and 

presented on DCs’ surface via MHC molecules as discussed above, then neoantigen-

loaded mature DCs are given to the patient [47]. However, cell-based vaccines have 

costly manufacturing/production and are time consuming. A peptide-based cancer 

vaccine is an intervention using synthetic peptides composed of about 25-30 amino 

acids with the region of neoantigen. The synthetic peptides can be mixed with 

adjuvants that improve the ability of APCs to uptake them, and provide better immune 

response - most clinical studies have utilised granulocyte macrophage colony-

stimulating factor (GM-CSF) and polyinosine-polycytidylic acid (poly I:C) [48]. The 

mixture of peptides and adjuvants is given to the patient who has those specific 

targeting neoantigens, and it is expected that APCs will uptake those peptides and 

process them for presentation to T cells.  Besides the peptide form, cancer vaccines 

can be also formulated from nucleotide sequences (i.e. DNA and mRNA) that can be 

encoded to predetermined neoantigens, the synthetic molecules could be engineered 

with immunomodulatory molecules [49]. The nucleic acids vaccines are re-infused to 

the patient, it must be also taken up by APCs, but not directly go to antigen processing 
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like peptide vaccine. The DNA vaccines are translocated to the nucleus to induct the 

transcription process, the resulting mRNAs (or RNA vaccines) migrate to cytoplasm, 

and they are translated to peptides prior to getting the process of antigen processing 

and MHC presentation [50].  

 

Figure 3.7 The development of cancer vaccine derived from neoantigens. There are 

several types of neoantigen based cancer vaccine formulation including cell-based 

vaccines, peptide based vaccines, and nucleic acids based vaccines. 

3.3.3 Preclinical and clinical studies of cancer vaccines targeting neoantigens 

The principal of personalised cancer vaccines is unlike a traditional vaccine against an 

immune disease, since DNA alterations across different patients have enormous 

diversity. The current approach is for neoantigens of an individual patient with 

malignant tumour to be identified; the pre-determined neoantigens are synthesised and 

formulated to various forms (peptides, DCs loaded, RNA, or DNA vaccines) with the 
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appropriated adjuvants prior to administrating to the patients. In recent years, there are 

several studies from both pre-clinical and clinical studies that have shown success 

with cancer vaccines in activation of immune response and suppressing tumour 

growth. Castle et al. performed a peptide-based cancer vaccine targeting neoantigens 

in a mouse melanoma model. They identified somatic mutations from whole exome 

sequencing (WES) from B16F0 murine melanoma and selected 50 mutated genes to 

generate synthetic mutated peptides. Those mutated peptides were tested for their 

immunogenicity using IFN-gamma ELISpot assay, there were 16 immunogenic 

peptides that were given to tumours transplanted mice. The results showed that two 

neoantigens (peptides derived from mutations of Kif18b (K739N) and Cpsf (D314N)) 

can reduce cancer progression and improve the  survival rate [51]. The group of 

Yadav determined neoepitopes from MC-38 cell lines by combining the approach of 

mass spectrometry and prediction from WES. The selected mutated peptides 

including those derived from Adpgk, Reps1, and Dpagt1 proteins were injected to 

mice with MC-38 tumour, they found that mice with the vaccination have a decrease 

of tumour growth [52].  

The first clinical study of a DCs-based cancer vaccine had been reported by Carreno 

et al. Somatic mutations were identified from WES, and candidate neoantigens were 

selected from the prediction of MHC-binding prediction algorithms. Neoantigen 

loaded DCs were administrated to three melanoma patients. It was found that 

neoantigens of DCs-based vaccine can expand the diversity of neoantigen specific T 

cell since the clone of T cells that are specific to neoantigens can be detected after 

vaccination. Moreover, this intervention can also enhance the response of existing T 

cells [53]. In 2017, there were two studies that demonstrated clinical trials using 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

24 

neoantigen-based cancer vaccine in patients with melanoma. The first one from the 

Dana-Faber Cancer Institute reported the efficiency of neoantigen based personalised 

cancer vaccine for advance stage of melanoma patients. Candidate neoantigens were 

identified from mutated peptides using MHC-peptide binding prediction, fully 

described in Section 3.4. Six melanoma patients were given mutated peptide-based 

vaccine, the result showed the identified neoantigens from a prediction pipeline 

preventing a recurrence of cancer of 4 from 6 patients after surgery for at least two 

years [44]. With a similar identification strategy, the research group of Sahin prepared 

RNA-based vaccine instead of peptides and re-infused to 13 melanoma patients. The 

analysis of immunosurveillance in peripheral mononuclear blood cells (PBMC) from 

patients after vaccination demonstrated that the RNA coded neoantigen vaccine 

boosted the activation of existing T cells clones specific to neoantigens [45]. 

Furthermore, two recent studies in 2019 have reported the effect of a neoantigen-

based cancer vaccine in glioblastoma, which is more challenging than the study of 

melanoma because glioblastoma typically have low mutation burden i.e. a low 

number of neoantigens derived from mutated proteins resulting in a less promising 

response in cancer immunotherapy [54]. Hilf et al. performed a peptide-based vaccine 

from synthetic peptides of pre-determined neoantigens and infused to 15 glioblastoma 

patients. Patients who received the neoantigen vaccination showed activation of 

CD4+ T cells against predicted neoantigens, and their median survival were improved 

for 29 months from diagnosis [55]. The other study from the group of Dana-Faber 

Cancer Institute, who previously studied in melanoma, personalised neoantigens from 

ten patients with glioblastoma were identified using the same strategy as the previous 

work [44]. Neoantigen-based cancer vaccines were formulated from synthetic 
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neoepitopes mixed with appropriated adjuvants and inoculated patients after surgical 

resection combining conventional radiotherapy. The identified neoantigen-based 

vaccine elevated the number of tumour infiltrating T cells and enhanced circulation of 

effector CD4+ and CD8+ T cells [56]. Overall, successful evidences from clinical 

studies demonstrate the potential of personalised cancer vaccine targeting neoantigens 

as an efficient cancer treatment that can deal with great diversity of cancer disease.   

3.4 The methodologies for neoantigen determination 

The goal of cancer vaccine targeting neoantigens therapeutic is establishing of T cell 

function for attacking tumour cells because T cells are the major effector cell 

populations that specifically responds to tumour antigens. Therefore, the 

determination of neoantigens that are specific for cancer cell is a crucial step for 

therapeutic success. With the advance of omics technologies, peptides that could be 

potent neoantigens can be determined by using the approach of immunopeptidomics 

via mass spectrometry or MHC-peptides binding prediction algorithms. 

3.4.1 The approach of mass spectrometry (MS) based immunopeptidomics 

As mentioned before, neoantigens are presented on the cell surface via MHC 

molecules the immunopeptidomics is used to study profiling of peptides bound HLA 

molecules, called HLA binding peptide (HLAp). The HLAp from tumour cells are 

isolated by the immunoprecipitation method using specific antibodies against HLA 

molecules. Normally, W6-32 is used to precipitate HLA class I, and IVA12 is used 

for HLA class II. HLAp complexes are then purified to elute peptides from HLA 

molecules, eluted peptides are prepared for liquid chromatography coupled with 

tandem mass spectrometry (LC-MS/MS) to identify MS/MS spectra. The MS spectra 
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are then searched against customised protein database to identify the amino acid 

sequence of the eluted peptides [57]. A key step in MS workflows is the matching of 

spectra against a predetermined sequence database. If a sequence is not present in the 

database, then a match cannot be made using this methodology. Databases containing 

very large sets of sequences, for example including all possible sequences or 

mutations are costly in terms of search time and statistical power, and thus an ideal 

strategy is to create a database from the sequences likely present in a given individual 

i.e. the database for searching can be generated to include peptides carrying non-

synonymous somatic mutations derived from WES of matched tumour/normal tissue 

from the patient, which is important to selected mutated peptides that specific for an 

individual patient. Most studies using MS-based method are combined with the 

analysis of WES or RNA sequencing data because a customised database is essential 

for identifying peptides containing mutated amino acids. Bassani-Sternberg et al. 

demonstrated that the combination of MS and WES data can identify 11 mutated 

peptides, of which two of them were immunogenic and could trigger activation of T 

cells specific that neoantigens [58]. Furthermore, the combination of MS analysis and 

genomic sequencing analysis have been shown successful in neoantigen identification 

for both pre-clinical and clinical studies as described in the Section 3.3.3.   

The approach of immunopeptidomics is a direct method to identify neoantigens that 

can be really expressed and presented via MHC proteins on cell surface. Thus, this 

method can reduce the risk from obtaining false neoepitopes compared to 

computational prediction methods [57], this issue might be crucial for planning 

interventions because only a handful of peptides are selected to perform immunogenic 

experiments and for cancer vaccine development. Besides neoantigen-derived somatic 
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mutations, MS based immunopeptidomics also discover neoantigens that can be 

derived from proteasome splicing, unusual post-translational modification, and non-

coding RNA [59]. However, the number of peptides identified from MS analysis 

depends on size of tissue sample especially in case of low mutation burden, small size 

of tissue samples requires the high sensitivity and accuracy for peptide identification 

[60]. In general, the identification of neoantigens using MS needs a large size of tissue 

sample for sample preparation e.g. bigger than 1 cm3. Although, in clinical practical, 

the big size of tumour tissue from surgery resection is not feasible for most cases, 

therefore, studies of neoantigens determination using MS experiment are mostly 

limited in the scope of cell culture experiments [61]. 

3.4.2 The approach of bioinformatics in genomic sequencing and computational 

analysis 

Using an in silico approach, the putative neoantigens are determined from the 

predicted binding affinity between mutated peptides and HLA molecules carried by 

an individual patient using the MHC-peptide binding affinity prediction algorithms. 

This approach is underpinned by next generation sequencing (NGS) data and 

bioinformatic software packages to generate the list of mutated peptides and HLA 

alleles. Somatic mutations can be identified from WES data of matched normal and 

tumour cells from an individual patient, only mutations that alter protein sequences 

are retained. A set of short peptides containing mutated amino acid(s) are extracted 

from each patient’s data set. Patient specific HLA alleles can be determined by either 

computational alignment methods or genotyping from blood samples. Since the 

mutated peptides are called from DNA sequencing data, RNA sequencing data is 

utilised to filter neoantigens derived from expressed proteins [62]. The MHC-peptide 
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prediction-based method require a smaller size of tumour tissue sample compared to 

MS based immunopeptidomics method, which are thus more feasible in real clinical 

practice. Moreover, with the advance of NGS technology, nucleotide sequencing from 

vesicular DNA derived from liquid biopsy could be performed, and that can allow 

feasibility for both solid and non-solid tumour [63]. Most algorithms predict the 

MHC-peptide binding affinity by learning from only chemical properties between 

peptides and MHC molecules from in vitro experiment. With the continuous 

developments in peptidomics studies, the performance of MHC-peptide binding 

affinity prediction algorithms has been improved by large training data sets derived 

from MS experiments, which are mostly deposited in public databases e.g. the 

Immune Epitope Database (IEDB) [64]. However, the diversity of HLA alleles 

contributes to the enormous variety of their binding preferences, which cannot be 

completely covered by available training data at the present. Thus, those alleles with 

few experimental peptides for training algorithms might give low precision of 

predicted performance [65].  

3.5 Neoantigen prediction with the approaches of bioinformatics 

Tumour specific neoantigens are non-self, mutated peptides presented by MHC 

molecules on the tumour cell surface, which have the potential to trigger the 

activation of tumour specific T cells. Neoantigen identification based computational 

prediction involves multiple processes including somatic mutation identification, 

HLA determination, and MHC-peptide binding prediction, then candidate neoantigens 

are prioritised and selected according to their potential for being immunogenic 

peptides (Figure 3.8). The source of mutated peptides come from the genomic 

alterations during cancer cell division. To identify neoantigens from sequencing data, 
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the WES data from normal and tumour tissue as well as RNA sequencing data are 

typically needed. In this section, the existing bioinformatics tools that have commonly 

used in neoantigen prediction are described, which include bioinformatic software for 

NGS analysis, programs for variant calling, the methods of in silico-based HLA 

genotyping, RNA quantification analysis, MHC-peptide binding algorithm, and the 

current existing pipelines for neoantigen identification. 

 

Figure 3.8 Neoantigen identification workflow from WES and RNA sequencing data 

with computational analysis. 

3.5.1 Non-synonymous somatic mutations identification 

There are many types of non-synonymous mutation causing the alteration of protein 

sequences such as nucleotide point mutations, frameshift mutations, insertion, 

deletion, and structural variants. Single nucleotide variants (SNVs), small insertions 

and deletions (Indels) are common genetic alterations that can be merely detected 
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from the short-read sequencing platforms with software packages of genomic analysis 

[66]. However, the data from whole genome sequencing (WGS) allows for more 

sensitive and accurate small variants detection, moreover, the structural variants and 

copy numbers can be reliably detected from WGS, which can increase the repertoire 

for mutated peptides [67-69]. In clinical practice, exome sequencing is preferred 

because only coding variants can be neoantigens, and WES assay is more feasible in 

term of cost, infrastructure capacity, and lower error rate compared to long read 

platforms such as WGS [66]. Nevertheless, the integrated use of the WES and WGS is 

the most suitable way to generate the best results [70]. There are three major steps for 

identification of non-synonymous somatic mutations, Firstly, both tumour and normal 

sequencing data are aligned to a reference genome, then the alignment results are 

processed to determine the genetic variants. Finally, mutations from a variant calling 

step are annotated whether they are in coding or non-coding regions (Figure 3.9). 
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Figure 3.9 The workflow of non-synonymous somatic mutations calling from 

matched tumour-normal WES data. 

a. Sequence alignment and pre-processing analysis 

The alignment of sequencing data to a reference genome is a crucial phase in genomic 

sequencing analysis [62]. The raw sequencing data in the FASTQ format are initially 

aligned to the human reference genome using an aligner tool such as Burrows-

Wheeler Aligner  (BWA) [71], this tool is commonly used by GATK pipeline [72]. 

Besides aligner tools, a reference human genome is also important for this step, the 

use of a recent version of reference human assembly genome provides a logical 

improvement over the old versions in quality of genomic alignments and downstream 

analysis [73]. A result file from alignment is stored in the format of binary 

alignment/map (BAM) [74], then duplicated reads that originate from the same 
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sequence, which might yield from polymerase chain reaction (PCR) step during DNA 

sample preparation, are removed by BAM file manipulation tools such as Samtools 

package, Picard, or Sambamba [74-76]. The process of quality control for BAM files, 

which are base quality score recalibration (BQSR) and indel realignment, is strongly 

recommended to be performed prior to variant calling to evaluate sequencing 

coverage and prevent false positive variants coming from alignment artifacts that 

might be called in the variant calling step [72]. Following the steps of sequence 

alignment and pre-processing BAM files, the analysis-ready BAM file is further used 

as an input file for the variant calling step. 

b. Somatic mutations calling 

The main propose of tumour sequencing is identifying tumour mutations excluding 

germline mutations that are existing in both normal and cancer cells, thus the best 

practice analysis for somatic mutation calling must exploit sequencing data from 

paired of tumour and normal samples. There are several existing variant callers that 

have been specifically developed for determination of somatic mutations. Among 

them, MuTect2 [77], Streka2 [78], and VarScan2 [79] are widely used for somatic 

mutation analysis with aligned data from tumour and normal simultaneously [62]. 

Those tools can identify both SNVs and Indels from analysis of BAM files of a paired 

tumour and normal, only MuTect2 can optionally applied with unpaired tumour-only 

samples. There is no single tool that gives superior performance among various 

somatic mutation callers, hence an ensemble usage that combines the results from 

multiple tools might yield the best result with a balance of sensitivity and specificity 

[80, 81]. The analysis produces an output stored in variant call format (VCF), a text 
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file with details of single nucleotide polymorphisms (SNPs) and Indels with various 

properties of that variant represented in the columns [82].  

c. Non-synonymous mutations annotation 

The details of variants called in a VCF file format can be further interpreted to 

consider the consequence of those variants such as impact on protein expression or 

association between variants and diseases. For neoantigen identification, the approach 

of transcript annotation is utilised to identify mutations that subsequently change 

protein sequences. The Ensembl Variant Effect Predictor (VEP) is a software tool for 

annotation and analysis various type of genomic variation in coding and non-coding 

regions. This software is critical for variant annotation and a subset prioritisation for 

further analysis [83]. 

3.5.2 Quantifying gene expression 

RNA sequencing is commonly used to measure levels of transcript expression, 

however, the accuracy of inferring gene expression level from short sequencing reads 

is one of the challenging issues for quantitation of gene expression levels [84]. In the 

recent years, several RNA analysis tools have been developed to quantify a transcript 

level from short read RNA sequencing. Conceptually, short sequencing reads are 

assigned to their originated transcripts, and that information is used to estimate gene 

abundances [85]. With the traditional methods, short sequencing reads are aligned to a 

reference genome to identify the transcript they arise from, then the relative gene 

expression levels can be inferred from reads mapping to annotated gene loci [86, 87]. 

Cufflinks is a popular tool-based alignment, it is mostly used for novel transcription 

discovery and quantification transcript levels for differential expressed gene analysis 
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[88]. However, the methods rely on an alignment step that can be time consuming and 

computationally intensive. Currently, there are a number of novel tools that do not 

rely on the step of a reference genome alignment, so-called an alignment-free method 

[89, 90]. Tools based alignment-free quantify transcript levels using a k-mer counting 

algorithm. They work by extracting sequence reads into k-mers followed by matching 

of k-mers to pre-indexed transcript databases using a hash table. The common tools 

with alignment-free sequence analysis are Sailfish [89], Salmon [91], and Kallisto 

[90]. They perform ultra-fast analysis, consume less computational resources, and 

yield high accuracy, the benchmarking studies reported their performance are 

comparable [92-94]. The workflow for RNA-seq quantification is shown in Figure 

3.10, the final output files from the current RNA-seq tools are generally reported as 

summarised read counts for each transcript or relative expression level in TPM 

(Transcripts Per Million).  
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Figure 3.10 Quantification of RNA expression with alignment based and alignment 

free methods.
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3.5.3 In Silico HLA class I typing using next-generation sequencing data 

To apply MHC class I-peptide binding prediction tools, patient-specific HLA alleles 

of MHC class I including HLA-A, HLA-B, and HLA-C must be determined, the class 

of human MHC was fully described in Section 3.1.2. The gold standard for HLA 

genotyping is laboratory-based sequence specific PCR amplification [95]. 

Alternatively, the computational approach for HLA typing based on genomic or 

transcriptomic data from a peripheral blood sample or normal tissue are commonly 

performed to determine HLA alleles [96]. At present, there are a number of HLA 

class I calling algorithms that display prediction accuracy as good as results from 

HLA typing using  DNA-based techniques [97, 98]. HLA genotyping algorithms 

mostly follow one of two major approaches that are an alignment-based method or an 

assembly-based method. The approach relying on alignment works by mapping 

sequencing reads to reference HLA sequences, and types of HLA are determined 

based on probabilistic models. The assembly-based methods assemble reads into 

contigs and align them to known HLA allele sequences, true HLA alleles are 

annotated by the best similarity score between the contig and each known HLA 

sequence [97]. The benchmarking study reported that OpiType [99] and PHLAT 

[100] display the highest accuracy with WES or RNA sequencing data, Opitype can 

reach up to 99% accuracy if limited by MHC class I only [97]. 

3.5.4 HLA class I-peptide binding affinity prediction 

The binding interaction between MHC molecules and peptides plays a key role in 

subsequent T cell activation and triggering the adaptive immune response. In the 

context of neoantigen identification, the binding affinity prediction is used for the 

initial step for selecting candidate neoantigens for downstream experiments. Over the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

37 

past few years, several binding affinity prediction algorithms based on machine 

learning approaches have been launched, and most are publicly available (Table 3.1). 

The predictors relying on machine learning distinguishing a peptide as a binder or 

non-binder by generating a predicted binding affinity score using the training model 

based on extracted representative features. However, the presentation of peptide on 

MHC molecule contains several complicated steps from protein expression, protein 

degradation, entering to ER, compatibility of peptide and MHC, and stability of the 

complex [10]. Thus, only binding affinity data might not be sufficient for representing 

whether a given peptide to be presented as an MHC ligand. Advances in the approach 

of MS can provide peptidome data, generated from eluted MHC ligands of MHC-

peptide complexes from in vitro using an immunoprecipitation technique followed by 

MS characterisation [101]. Recently, the existing MHC-peptide binding prediction 

algorithms utilise either only peptidome data or combination of MS peptides and 

binding affinity data, which would contain the comprehensive signal of antigen 

processing and presentation rather than binding affinity alone [3, 102, 103]. 

NetMHCpan uses an artificial neural network with trained on a data set combining 

data on binding affinity and MS eluted ligand data. MHCflurry is MHC class I 

predictor which also uses a neural networks technique for data training, the models in 

MHCflurry have been built by either only binding affinity data or combined with MS 

data. The major difference between two tools is the prediction of specific MHC 

alleles. While NetMHCpan uses the approach of pan-allele model which is a single 

model takes as input both the peptide and a representation of the MHC alleles [2], 

MHCflurry is an allele-specific predictor whereby training and selection of models 

are done separately per allele [3]. Among those publicly available predictors, the 
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prediction tools from the NetMHC family developed by Morten’s group at the 

Technical University of Denmark are commonly used in clinical studies. The 

systematic benchmark analysis reported NetMHCpan and MHCflurry display a good 

performance in distinguishing binding from non-binding peptides [1]. 

The output from both prediction tools reports similar information including the 

predicted half maximal inhibitory concentration (IC50) value in nM unit and the 

predicted percentile rank (% rank) score. Nevertheless, there is no an actual threshold 

for precise determining a binder, IC50 < 500 nM is the common threshold for binding 

affinity which classify that a peptide is a binder [104]. The predicted % rank scores 

are estimated as the rank position of a given score within a list of scores from a set of 

125,000 of 8-12 mers random natural peptides (25,000 of each length), assumed to 

represent the distribution of false results (non-binders) or general background non-

specific binding of regular human peptides. NetMHCpan4.0 documentation 

recommends using the % rank score rather than the predicted binding affinity since 

the different MHC molecules have a different preference of binding affinity. 

NetMHCpan4.0’s developers also performed the sensitivity and specificity curve as a 

function of the % rank score, and a rank < 2% was selected as a threshold which has 

both high sensitivity and specificity [2]. MHCflurry reports the value of the predicted 

binding affinity, IC50 in nM unit, (“mhcflurry_prediction”), the low and high 

predicted binding affinity which come from the top 5% and the bottom 95% from 

different models of each allele, and the % rank scores (“prediction_percentile”) that 

are estimated from the quantile of the affinity prediction among a large number of 

random peptides tested on that allele. This tool also suggests users to apply IC50 < 500 

nM as a threshold to classify a binder and a non-binder. However, the source 
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MHCflurry publication did not include sensitivity and specificity analysis to select the 

threshold for the % rank and do not recommend which the % rank threshold to be 

used for selecting binding peptides [3]. The topic of statistics related to MHC-peptide 

binding is the specific focus of Chapter 4.
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Table 3.1 MHC class I-peptide binding affinity prediction tools 

MHC-binding 

affinity prediction 

tool (version) 

Predictive methods Key features 
Publicly 

available 

NetMHC4.0 [105]  Artificial neural 

network-based 

algorithm, NNAlign 

(allele-specific) 

This tool is for prediction of MHC-

peptide binding affinity, it allows 

multiple lengths of peptides. 
Yes 

NetMHCpan4.1 

[102] 

Artificial neural 

network-based 

algorithm, NNAlign 

(multi-allelic) 

This model is trained by expanded 

data from both binding affinity data 

and eluted peptide data identify by 

mass spectrometry. 

Yes 

NetMHCcons1.1 

[106] 

NetMHC, 

NetMHCpan: artificial 

neural network-based                      

PickPocket: matrix-

based 

A predictor is for analysis of 

combinations of three MHC-

peptide binding predictor tools.  Yes 

MHCflurry2.0 

[107] 

Neural network  This tool combines new model for 

MHC class I binding prediction and 

antigen processing, which are 

trained by MHC I bound ligands 

identified by MS. 

Yes 

MHCnuggets2.3 

[108] 

Long short-term 

memory (LSTM) 

neural network  

This tool can predict binding for 

common or rare alleles of MHC 

class I or class II. 

Yes 

MHCSeqNet [109] Natural language 

processing based 

neural network  

This tool models amino acid 

sequence of MHC allele and 

peptide as sentences with amino 

acids as individual words, which 

allow a prediction of unseen MHC 

alleles and peptides with any 

length.  

Yes 

EDGE [103] Deep learning Training data from deconvoluted 

specific HLA-peptide identified by 

MS analysis 

No 
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3.5.5 Existing multi-step neoantigen prediction pipelines  

As described above, neoantigen identification involves several steps from pre-

processing data and input data preparation to binding affinity prediction. Over the past 

few years, several multi-step workflows relying on MHC-peptide binding predictors 

have been developed, those tools have built custom code to extract and generate a list 

of short-mutated peptides from a variant call file and perform command line-based 

analysis for running of MHC-peptide binding prediction tools. Furthermore, those 

workflows have integrated a variety of analysis methods besides binding prediction, 

which can help user to make a shortlist of candidate neoantigens (Table 3.2). 

However, those tools do not implement the steps for variant calling, HLA genotyping, 

and quantifying gene expression level, they usually require data input as a mutation 

file in VCF format, list of HLA alleles, and transcript expression level in a tabular 

format. Some workflows only perform binding affinity prediction and annotate gene 

name to input peptides, then return the result table that provide information for a pair 

of mutated peptide and HLA allele, such as predicted binding affinity, name of gene 

that peptide originate from, gene expression level, or variant types, but some of those 

workflows have integrated  mathematical operation to compute a ranking score or 

machine learning models to classify levels for an individual predicted peptides that 

can help to select a shortlist of candidate neoantigens for downstream experiments. 

pVacseq is a well-documented automated pipeline for neoantigen prediction, this tool 

uses WES or RNA sequencing data to systematically generate the repertoire of 

mutated peptides, perform binding prediction, and apply the filter criteria to make a 

shortlist of candidate neoantigens. Aside from binding affinity and gene expression 

level, this program filters candidate neoepitopes from the depth coverage of 
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sequencing reads and variant allele frequency [110]. pVacseq has recently been added 

in pVactools, a computational tool suite for neoantigen characterisation and vaccine 

designs [111]. MuPeXI requires data input similar to pVacseq and also incorporates a 

binding predictor from NetMHC suite. The major difference is the process of creating 

a shortlist of candidate neoantigens, MuPeXI has a built-in multiplicative function to 

calculate a ranking score for an individual peptide deriving from the input variants. 

The prioritisation score is computed based on HLA-binding affinity, similarity 

between mutated peptides and their self-counterpart, mutant allele frequency, and 

gene expression levels. Moreover, MuPeXI provide the full set of identified 

neopeptides in a tabular format containing several informative annotations and 

prioritising scores that users can easily sort and filter to select candidate neoantigens 

[112]. However, strong binding peptides with high expression level does not ensure 

that they can be recognised by T cell receptor, thus, the recent study have put an effort 

to develop the workflow augmented with the model-based machine learning to predict 

immunogenicity of candidate neoantigens, such as Neopepsee [113]. The Neopepsee 

workflow requires the data input from RNA sequencing and extracted mutated 

peptides from input variants. This tool performs the binding affinity prediction using 

NetCTLpan [114], then peptides with predicted binding affinity scores are further 

determined immunogenicity using the build-in machine learning classifier, that 

classifies the candidate neoeptiopes into three classes including high, medium, and 

low according to the predicted immunogenicity.
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Table 3.2 Automated pipeline for neoantigen identification tools 

Neoantigen 

identification 

workflow 

Used MHC-

binding 

prediction tools 

Key features 

ProGeo-neo [115] NetMHCpan4.0 This workflow is for analysis data of genomics, 

transcriptomics, and proteomics. The prediction of MHC-

peptide binding affinity from genomic data were screened 

by proteomic data, gene expression, and T cell recognition 

epitope. 

pVACtools [111] NetMHCpan 

NetMHC 

NetMHCcons 

PickPocket    

MHCflurry 

MHCnuggets  

This tool identifies neoantigens from a variety of somatic 

alterations including structural variants and prioritises with 

ranking scores that account from binding affinity, gene 

expression, sequence read coverage, agretopicity. 

Interactive visualisation is available. 

neoANT-HILL 

[116] 

NetMHC4.0 

NetMHCpan4.0 

NetMHCcons 

NetMHCstabpan 

PickPocket  

MHCflurry 

Mutated peptides can be generated from variants from RNA 

sequencing data, a graphical user interface (GUI) is 

available. 

pTuneos [117] NetMHCpan4.0 Determination of neoantigen from predicted MHC 

presentation and immunogenicity, prioritisation with 

ranking scores that account binding affinity, sequence 

similarity between a pair of normal and mutant peptides, 

peptide, hydrophobicity score, and T cell recognition. 

Neoepiscope [118] NetMHCpan4.0 

MHCnuggets 

MHCflurry 

This tool emphasises the process of variant calling, in the 

context of interaction of somatic mutation and neighboring 

germline variants, and address variant phasing for SNVs 

and Indels. 

ScanNeo [119] NetMHC       

NetMHCpan 

This workflow is for analysis RNA sequencing data to 

predict neoantigens derived from small to large sized Indels 

antigen.garnish 

[120] 

NetMHC 

NetMHCpan 

MHCnuggests 

MHCflurry  

This pipeline is combination of neoantigen prediction and 

neoantigen quality analysis tools to predict peptide 

immunogenicity. Predicted affinities are averaged to 

generate the ensemble score. 

NeoPredPipe [121] NetMHCpan  This automated pipeline connecting commonly 

bioinformatic software, processing data, prediction, and 

summary statistics as output for downstream analysis. 

retained_intron-

neoantigen_pipeline 

[122] 

NetMHCpan3.1 A computational approach to detecting intron retention 

events from tumour RNA sequencing data to generate 

peptides containing ≥1 amino acids from intron for 

neoantigen prediction. 
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Table 3.2 Automated pipeline for neoantigen identification tools (cont.) 

Neoantigen 

identification 

workflow 

Used MHC-

binding prediction 

tools 

Key features 

MuPeXI [112] NetMHCpan This pipeline automatically extracts mutated peptide 

sequences and returns the informative output table with a 

priority score for each predicted peptide. 

Vaxrank [123] NetMHC 

NetMHCpan 

NetMHCcons 

MHCflurry 

A pipeline to determine which peptides should be used in a 

vaccine. This tool applied ranking scores to select putative 

neoantigens, and the output will be used to make long 

peptides. 

TSNAD [124] NetMHCpan2.8 A pipeline for extracting somatic mutations from genome 

analysis and predicting potential neoantigens, which could 

be either extracellular mutation of membrane proteins or 

mutated peptides presented by MHC molecules. 

Neoepitope 

prediction [125] 

NetMHCCons1.1 A pipeline for identification of putative neoantigens based 

on somatic missense mutations and gene fusion using whole 

genome sequencing data. 

CloudNeo [126] NetMHCpan A cloud-based computational workflow for identifying 

patient specific tumour neoantigens for NGS sequencing 

data. This workflow can run on cloud platform of NCI 

Cancer Genomics Cloud, which provide graphical user 

interface. 

3.6 Prediction of immunogenic T cell epitopes 

The ultimate goal of neoantigen prediction is getting peptides that can be recognised 

by T cell receptors and activate the adaptive immune system to eliminate cancer cells. 

The process of antigen processing and MHC presentation allows T cells to detect 

antigens derived from invaded pathogens or mutated peptides expressed by cancer 

cells. MHC presented peptides that can trigger an immune response are described as 

epitopes. Even though all epitopes must be presented by MHC molecules, but not all 

MHC ligands can stimulate T cells activation. Most neoantigen prediction workflows 

currently rely on MHC-peptide binding prediction to identify neoepitopes, that step is 

necessary but might not sufficient to determine real neoantigens. The best validation 
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of immunogenicity is the wet experiments i.e. cytokine secretion assays, such as 

ELISpot or ELISA, intracellular cytokine-staining assays, such as flow cytometry 

assays, however those experiments are time and resource consuming. In recent years, 

there has been an expansion of databases that collect experimental data from 

laboratories, the computational methods for immunogenic prediction therefore 

become an alternative for epitope identification [127]. In this section, in silico 

methods for immunogenic MHC class I ligands prediction are emphasised. 

3.6.1 Properties of immunogenic MHC class I presented peptides 

A specific MHC presented peptide will be recognised by an estimated average of one 

in 100,000 naïve T cells [128]. The peptide-immunisation experiments have shown 

that about half of the presented peptides are epitopes, which means all epitopes are 

MHC binding peptides, but not all MHC presented peptides are immunogenic 

peptides [129]. The identification of epitopes is crucial to the study and understanding 

of cellular immune responses and great importance in vaccine development. The 

strength of interaction between MHC I presented peptides and TCR depends on both 

MHC class I molecule and the presented peptide. However, the extreme high diversity 

of T cells is a key factor to characterise the specificity between TCR and a peptide. 

According to sophisticated steps for MHC-peptide presentation and T cell 

recognition, as described in Section 3.1.3, the recent computational approaches 

consider predicting epitopes from peptide sequences. Since TCR-epitope interaction is 

governed by the physicochemical principles like other protein-protein interactions, 

thus, more immunodominant epitopes are expected to have some preferred properties 

that can make a stronger interaction with TCRs than non-epitopes. Within that 

context, physicochemical properties and amino acid characteristic of epitope and non-
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epitope peptides has been investigated. A set of immunogenic and non-immunogenic 

of MHC I presented peptides were collected and compared the amino acid frequencies 

and physicochemical properties of each amino acid in peptides from both sets under 

the hypothesis that the certain amino acids are more likely to interact with TCRs. The 

study showed that large and aromatic residues such as Phenylalanine and Tryptophan 

were overrepresented in a set of immunogenic peptides, and a trend for 

overrepresentation of acidic residues was observed in immunogenic presented 

peptides. In addition, significant associations with immunogenicity were observed for 

Isoleucine, Lysine, and Methionine [130]. Moreover, the structural studies and 

immunogenicity studies of specific T cell clones with altered peptide ligands 

demonstrated that some position in a presented peptide, especially positions 4-6, are 

in close contact with TCR and important for specific T-cell responses [131, 132]. The 

amino acid profile of each position in an MHC class I presented peptide were 

compared in both sets of immunogenic and non-immunogenic peptides, the 

significant difference was found in the position 4,5, and 6, but not found a substantial 

difference of amino acid profile at other positions [130]. The information from those 

studies indicates that immunogenic MHC I presented peptides have some certain 

signatures for T cell recognition. 

3.6.2 In silico prediction methods 

The increasing of data repositories and advance in immunoinformatic facilitate data 

management and development of predictive methods for T cell epitope prediction. 

SYFPEITHI is one of the oldest immune epitope databases and contains more than 

7000 peptides that bind to MHC class I and II molecules [133]. Although, the data in 

SYFPEITHI became static in 2012 due to increasing utility of IEDB that has been 
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established since 2004. The advance in high throughput experiments results in a 

rapidly increase in the number of curated epitopes in 2015, and the recent update 

reported IEDB contains >1.6 million experiments representing the adaptive immune 

response to epitopes [134]. The epitope data in IEDB are not only from human and 

mouse but also from chimpanzee, macaque, cow, and pigs [135]. A recent report 

showed that IEDB stores more than 1,000,000  peptides with positive result derived 

from T cell assays, B cell assays, and MHC ligand assays, and more than 500,000 

peptides with negative result [136]. Several bioinformatics prediction tools determine 

T cells epitopes by a strength of binding interaction between peptides and MHC 

molecules based on the biological process that the TCR can bind to only an MHC 

presented peptide. These approaches rely on the fact that generation of the peptide by 

natural processing and subsequent HLA binding are key necessary steps for T cell 

immunogenicity, but HLA binding peptides might not be sufficient to be 

immunogenic peptides [137]. A methodology involves directly using epitope and non-

epitope data to train the predictive network by learning from physicochemical 

properties of peptide sequences to predict if a peptide can be immunogenic. However, 

the determinants of epitope immunogenicity in association with their recognition by T 

cells remain poorly understood. Given the fact that different individuals have different 

TCR repertories, in theory, epitope immunogenicity should differ between 

individuals.  

The structure requirements for the interaction of MHC presented peptide complexes 

and TCRs as well as the different properties in the motif between immunodominant 

epitopes and non-epitopes are increasing understood [130, 137]. There are currently a 

wide variety of sequence-based prediction methods for T cell epitope prediction, 
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which attempt to use computational methods to discriminate epitopes and non-

epitopes by the physicochemical principles and distribution of amino acids in a 

sequence (Table 3.3). Immunogenicity has been launched in 2013, and the user 

interface software is available at the IEDB. This tool predicts MHC class I presented 

peptides into two categories for epitopes and non-epitopes. Immunogenicity was build 

based on the enrichment of amino acids and the importance scores of different 

positions of the MHC I presented peptides between immunogenic and non-

immunogenic peptides [130]. NetTepi was developed based on MHC-peptide stability 

prediction tool, NetMHCstab [138] with the aim of creating an integrated method for 

T cell epitope prediction, combining MHC-peptide binding affinity, stability and T 

cell propensity predictions [139]. TCR classifier is developed to predict the 

recognition of a peptide from the sequence patterns of CDR3 region in the TCR. This 

model was build based on the TCR sequences of HLA-B*08, the results demonstrated 

the feasibility of the approach of prediction of T cell epitope recognition based on 

sequence data, but does not cover other HLA alleles in practice [140]. Moreover, 

there is a current tool that uses a computational framework mimicking the 

thermodynamic interaction between peptide-MHC complexes and public TCR 

clonotypes, termed TCR-peptide contact potential profiling (CPP), generates 

probabilistic estimates of immunogenicity [141]. INeo-Epp is the current T cell 

epitope prediction tool, which has web-based user interface. This tool combined 

several factors involved in physicochemical properties of amino acids such as 

accessibility, molecular weight, molecular structure, hydrophobicity, polarity, 

entropy, and charge as well as MHC-peptide binding affinity for training epitope and 

non-epitope peptide data set to develop the T cell epitope classification model [142].
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Table 3.3 T cell-MHC class I epitope prediction tools 

Tool Predictive method Features for model learning 

Immunogenicity 

[130] 

Immunogenicity 

score 

Molecular weight, charge, the importance of 

positions in a peptide 

NetTepi [139] Integrated 

predicted scores 

from 

NetMHCcons 

NetMHCstab  

Immunogenicity 

Peptide-MHC binding affinity and stability, T 

cell propensity 

TCR-classifier 

[140] 

Random forest 

classifiers 

Properties of the CDR3: sequence length, 

absolute count of each amino acid, basicity, 

hydrophobicity, helicity, isoelectric point, and 

mutation rate 

Repitope [141] randomised trees 

(ERT) algorithm 

Peptide length, amino acid existence, peptide 

description, and TCR-peptide contact potential 

profiling (CPP) 

INeo-Epp [142] random forest 

classifier 

Amino acid physicochemical property, MHC-

peptide binding affinity, peptide entropy, 

predicted immunogenicity score from 

Immunogenicity 
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3.7 The Expectation Maximisation (EM) algorithm for parameter estimation 

The EM algorithm, introduced by Dempster et al. in 1977 [143], is an efficient 

iterative method to compute the Maximum Likelihood (ML) estimation in statistical 

models with the presence of unobserved latent variables. Each iteration cycles 

between two processes including the E-step (Expectation) and the M-step 

(Maximisation). The E-step attempts to estimate the missing data or latent variables 

given the observed data and current estimated parameters of the distribution. Then, 

the M-step tries to optimise the parameters of the model by maximising the likelihood 

function with the assumption that the missing data are known, where the missing data 

are placed from the estimation in the E-step. The application of EM algorithm is 

widely used for estimating missing data for clustering in a mixture model, or in ML 

estimation, moreover, the EM approach is commonly used for estimating parameters 

of the distribution [144]. In this section, the use of EM algorithm for parameter 

estimation is highlighted.  

To describe what probability each random variable has in the whole data, the model 

family and parameters for a distribution must be known for the situation of interest. 

However, in reality, the generative source of data might be uncertain i.e. the model 

family and parameters representing that distribution are not known, thus it is essential 

to explore and predict the parameter values and the statistical model that can well 

describe data distribution. Parameter estimation is a branch of statistics that 

contributes tools using observed data to estimate parameters of a distribution, so-

called estimator [145]. By leveraging the EM algorithm, the approach of ML 

estimation is a well-known method and commonly used. The EM algorithm iteratively 

switches back and forth between the two steps of the E-step M-step to optimise the 
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estimate parameters by likelihood maximisation. If the estimate parameters or the 

likelihood are not getting to convergence, the new parameters from the M steps will 

return to the E-step. Finally, these two steps are repeated until the estimate model get 

the convergence [146]. To find a maximum likelihood solution, it generally involves 

the derivatives of the likelihood function that requires taking all the unknown values, 

the parameters, and the latent variables, and together with solving the resulting 

equations [143]. 

Besides the conventional method with likelihood function, the estimation with method 

of moments is also widely used for the parameter estimation approach. The method of 

moments estimators is simple and in closed form. In statistics, method of moments, 

introduced by Karl Pearson in 1984 [147], is an approach for population parameters 

estimation such as mean or variance. This approach estimates the parameters of a 

distribution model by matching the moments of the data set with that candidate 

model. In the first moment condition, it expresses the expected values of random 

variables under the parameters calculated from population as functions of the 

population moments. Then, those equations are set as equal to the sample moment. 

The number of those equations is equivalent to the number of parameters that are 

desired to estimate, and they are solved for estimating the parameters of interest 

[148]. With the EM framework, method of moments can apply in the estimation step 

by replacing the likelihood function. Instead of maximising likelihood in the 

estimation step, the parameters are optimised based on method of moment until 

convergence [149]. One of the problems related to parameter estimation is we may 

not know which types of statistical model would be best represent the distribution of 

data. Hence, the distribution models representing observed data must be determined, 
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once the best fitting distribution has been identified, the parameters of that function 

can be then estimated. In the following section, the parameters estimation for a 

mixture distribution of normal and non-normal (beta) distributions using EM 

algorithm with ML estimation are described.  

3.7.1 The parameter estimation using EM for a mixture of normal distributions 

The normal distribution (also known as Gaussian distribution) is the single most 

important distribution in natural and social sciences to represent real-valued random 

variables. It is a type of continuous probability distribution that is described by a 

distribution with a symmetrical bell shape which is parametrised by two parameters 

that are mean (𝜇) and standard variation (𝜎) (Figure 3.11) [150]. The area under the 

curve is the same and most of the values occur in the middle of the curve. The mean 

controls the location of the central peak, while the variance controls the width of the 

distribution [151]. The general form of its PDF and CDF with the form of error 

function (erf(x)) are shown as the Eq. 3.1 and 3.2, respectively. 
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Figure 3.11 The distribution shapes generated by the normal distribution with 

different of mean and variance values. 

𝑁𝜇,𝜎(𝑥) =
1

𝜎√2𝜋
exp[−

(𝑥−𝜇)2

2𝜎2 ] ___________ (3.1) 

𝐹𝜇,𝜎(𝑥) =
1

2
[1 + erf (

𝑥−𝜇

𝜎√2
)]___________ (3.2) 

There are two distribution parameters including 𝜇 and 𝜎,  𝜋 is the mathematical 

constant ~3.1415, the random variables in normal distribution can be any real number, 

−∞ < 𝑥 <  ∞. However, some observed data might arise from more than one 

generation process, such a distribution is represented by mixture distributions, which 

are contributed from the average weight of two or more PDFs. The general form of a 

Gaussian mixture model is the Eq. 3.3, where c is the number of components, each 

component is contributed by the weighting parameter (w), 0 < wj < 1. The model 

parameters including 𝜇𝑗 , 𝜎𝑗  and 𝑤𝑗 are described in term of 𝜃.  

𝑓𝜃(𝑥) = Σ𝑗=1
𝑐 𝑤𝑗 ∙ 𝑁𝜇𝑗,𝜎𝑗

(𝑥)___________ (3.3) 
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A Gaussian mixture model is commonly used as a parametric probability density 

function for a distribution of continuous measurement. The model parameters are 

usually estimated using the iterative EM algorithm that aim to obtain the maximum 

likelihood estimate of Gaussian parameters. Given the data have N observations, X = 

{x1,…,xN} , the likelihood for the Gaussian parameters of 𝜇 and 𝜎 displays in the Eq. 

3.4, and the log-likelihood function is generally used because it is convenient for 

derivative calculation (Eq. 3.5).  

𝐿(𝜇, 𝜎|𝑋) =  𝜎−𝑁(√2𝜋)
−𝑁

∏ exp [−
(𝑥𝑛−𝜇)2

2𝜎2 ]𝑁
𝑛=1  ___________ (3.4) 

𝑙(𝜇, 𝜎|𝑋) = log[𝐿(𝜇, 𝜎|𝑋)] = −𝑁 log(𝜎) − 𝑁 log(√2𝜋) −
1

2𝜎2
∑ (𝑥𝑛 − 𝜇) 𝑁

𝑛=1 ___________ 

(3.5) 

For parameter estimation using the EM algorithm, we define X = {x1,…,xN}, as 

observed variables from a Gaussian mixture model, which have N data points and K 

components, and Z = {z1,…,zN}, is denoted as a set of latent variables corresponding 

to each data point of each component. The EM algorithm attempts to find the 

maximum likelihood estimates for model parameters with latent variables, thus the 

complete log-likelihood derived from the posterior of the latent variables of the data 

X with the expression of normal distribution parameters (Eq. 3.6).  

log (𝑃(𝑋, 𝑍|𝜇, 𝜎, 𝑤) =  ∑ ∑ 𝑧𝑛𝑘log [𝑁(𝑥𝑛; 𝜇𝑘 , 𝜎𝑘)𝑤𝑘]𝐾
𝑘=1

𝑁
𝑛=1 ___________ (3.6) 

In the E-step, the current values of estimated parameters at the iteration i are used to 

calculate the expected value of the latent variables (Eq. 3.7). Therefore, the expected 

value of the complete log-likelihood is shown as the Eq. 3.8. 

E
𝑝(𝑍|𝑋,𝜇𝑘

𝑖 ,𝜎𝑘
𝑖 ,𝑤𝑘

𝑖 ) 
[𝑧𝑛𝑘] = 

𝑁(𝑥𝑛;𝜇𝑘
𝑖 ,𝜎𝑘

𝑖 )𝑤𝑘
𝑖

∑ 𝑁(𝑥𝑛;𝜇𝑘
𝑖 ,𝜎𝑘

𝑖 )𝑤𝑘
𝑖𝐾

𝑘=1

___________ (3.7) 
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E[log (𝑃(𝑋, 𝑍|𝜇, 𝜎, 𝑤)] =  ∑ ∑ 𝐸[𝑧𝑛𝑘] log[𝑁(𝑥𝑛; 𝜇𝑘 , 𝜎𝑘)𝑤𝑘]𝐾
𝑘=1

𝑁
𝑛=1 ___________ (3.8) 

In the M-step, the expectation of the complete log-likelihood needs to be maximised 

to update parameters for the next iteration. The estimated parameters are solved from 

the derivative of the expected complete log-likelihood with the respect to 𝜇𝑘, 𝜎𝑘, and 

𝑤𝑘 (Eq. 3.9-3.11). 

𝜇𝑘
𝑖+1 =

∑ 𝐸[𝑧𝑛𝑘]𝑥𝑛
𝑁
𝑛=1

∑ 𝐸[𝑧𝑛𝑘]𝑁
𝑛=1

=
1

𝑁𝑘
∑ 𝑧𝑛𝑘𝑥𝑛

𝑁
𝑛=1 ___________ (3.9) 

𝜎𝑘
𝑖+1 =

∑ 𝐸[𝑧𝑛𝑘](𝑥𝑛−𝜇𝑘
𝑖+1)

2
𝑁
𝑛=1

∑ 𝐸[𝑧𝑛𝑘]𝑁
𝑛=1

=  
1

𝑁𝑘
∑ 𝑧𝑛𝑘(𝑥𝑛 − 𝜇𝑘

𝑖+1)
2𝑁

𝑛=1 ___________ (3.10) 

𝑤𝑘
𝑖+1 =

∑ 𝐸[𝑧𝑛𝑘]𝑁
𝑛=1

𝑁
=

𝑁𝑘

𝑁
___________ (3.11) 

3.7.2 The parameter estimation using EM for a mixture of beta distributions 

The beta distribution is a flexible model, with a continuous probability distribution 

that takes values in the unit interval of 0 to 1. The beta distribution is widely used in 

statistical analysis and data science (including bioinformatics applications) to model 

the behaviour of random variables that naturally takes values between 0 and 1 such as 

relative frequencies, probabilities, absolute correlation coefficients [152]. The beta 

distribution is parametrised by two positive shape parameters that are denoted by α 

and β, that materialises as proponents of the random variable and control the shape of 

the distribution. The two parameters (α and β) must be positive numbers, and they can 

produce a variety of shapes depending on whether α = β, α < β, or α > β (Figure 3.12). 

The beta probability density on [0, 1] forms as the Eq.3.12, and the CDF for the beta 

distribution is also formed as the incomplete beta function ratio, that is normally 

denoted by Ix (Eq. 3.13). 
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𝑓𝛼,𝛽 (𝑥) =
𝑥𝛼−1(1−𝑥)𝛽−1

𝐵(𝛼,𝛽)
, 𝐵(𝛼, 𝛽) =

𝛤(𝛼)𝛤(𝛽)

𝛤(𝛼+𝛽)
 and 𝛤 is the gamma function  

 ___________ (3.12) 

𝐹𝛼,𝛽 (𝑥) = 𝐼𝑥(𝛼, 𝛽) =
𝐵𝛼,𝛽(𝑥)

𝐵(𝛼,𝛽)
, 𝐵𝛼,𝛽(𝑥) is the incomplete beta function  

 ___________ (3.13) 

 

Figure 3.12 The distribution shapes generated by the beta distribution with different 

values of α and β parameters. 

Even a single beta model can create various distribution shapes depending on 

different combinations of the parameters of α and β, the mixtures of beta model are 

more flexible. The general form of a mixture of beta distribution is shown as the Eq. 

3.14, where c is the number of components, and wj is the weighting parameter for 

each component, 0 < wj < 1. The model parameters including 𝛼𝑗 , 𝛽𝑗 and 𝜋𝑗 are 

described in terms of 𝜃. From the random variables, the parameter shapes of α and β 

can be described by the terms of 𝜇 and 𝜎2 (Eq. 3.15-3.16). 
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𝑓𝜃(𝑥) = Σ𝑗=1
𝑐 𝑤𝑗 ∙ 𝑓𝛼𝑗,𝛽𝑗

(𝑥) ___________ (3.14) 

𝛼 = 𝜇 (
𝜇(1−𝜇)

𝜎2 − 1)  ___________ (3.15) 

𝛽 = (1 − 𝜇) (
𝜇(1−𝜇)

𝜎2 − 1) ___________ (3.16) 

Given the data have N observations, X = {x1,…,xN}, the likelihood function for the 

beta distribution is the Eq. 3.17, and the log-likelihood can take the form as the Eq. 

3.18. 

𝐿(𝛼, 𝛽)|𝑋) = (
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
)

𝑁
 ∏ (𝑥𝑛)𝛼−1 ∏ (1 − 𝑥𝑛)𝛽−1𝑁

𝑛=1
𝑁
𝑛=1  ___________ (3.17) 

𝑙(𝛼, 𝛽|𝑋) = log[𝐿(𝛼, 𝛽)|𝑋)] =  𝑁𝑙𝑜𝑔(Γ(𝛼 + 𝛽)) − 𝑁𝑙𝑜𝑔(Γ(𝛼)) − 𝑁𝑙𝑜𝑔(Γ(𝛽)) +

                        (𝛼 − 1) ∑ log(𝑥𝑛) + (𝛽 − 1) ∑ log (1 − 𝑥𝑛)𝑁
𝑛=1

𝑁
𝑛=1    ___________ (3.18) 

To estimate beta parameters using the EM algorithm with the ML method, the 

procedures in the E-step is similar to a Gaussian mixture model, but the expectation is 

considered with the probability density function of beta model. We denote X = 

{x1,…,xN}, Z = {z1,…,zN}, and data have K components. Thus, the expectation of the 

complete log-likelihood for beta mixture model displays as the Eq. 3.19. 

𝐸[log(𝑃(𝑥, 𝑧|𝛼, 𝛽, 𝑤))] = ∑ ∑ 𝐸[𝑍𝑛𝑘]log [𝑓(𝑥𝑛; 𝛼𝑘, 𝛽𝑘)𝑤𝑘]𝐾
𝑘=1

𝑁
𝑛=1 ___________ 

(3.19) 

The derivative of the expected log-likelihood of beta function is performed with the 

respect to each parameter. The partial derivatives are set to zero to solve the update 

parameters (Eq. 3.20-3.22). However, there is no closed form solution to the 

derivative equation of 𝛼 and 𝛽 parameters if any observed data points are equal to 0 

or 1. 

𝜕

𝜕𝛼𝑘
𝐸[log(𝑃(𝑥, 𝑧|𝛼, 𝛽, 𝑤))] = ∑ 𝐸[𝑧𝑛𝑘]𝑁

𝑛=1 [
Γ′(𝛼+𝛽)

Γ(𝛼+𝛽)
−

Γ′(𝛼)

Γ(𝛼)
+ log(𝑥𝑛)] ___________ (3.20) 
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𝜕

𝜕𝛽𝑘
𝐸[log(𝑃(𝑥, 𝑧|𝛼, 𝛽, 𝑤))] = ∑ 𝐸[𝑧𝑛𝑘]𝑁

𝑛=1 [
Γ′(𝛼+𝛽)

Γ(𝛼+𝛽)
−

Γ′(𝛽)

Γ(𝛽)
+ log(1 − 𝑥𝑛)]___________ 

(3.21) 

𝜕

𝜕𝑤𝑘
𝐸[log(𝑃(𝑥, 𝑧|𝛼, 𝛽, 𝑤))] = ∑ 𝐸[𝑧𝑛𝑘]𝑁

𝑛=1 ∙
1

𝑤𝑘
___________ (3.22) 

Since the derivative with the respect to 𝑤𝑘 does not rely on the PDF of beta model, 

thus the estimated 𝑤𝑘 can be solved to get closed form same as the formula in Eq. 

3.11. The major problem of the log-likelihood function for beta distribution is that it is 

unable to estimate well for 𝛼  ≠ 1 if any observed data points are xn = 0, or for 𝛽 ≠ 1 if 

any observed data points are xn = 1. Therefore, the implementations of ML estimators 

might not be suitable for the best estimation of beta parameters.  

As mentioned before, the approach of method of moments is also widely used for 

parameter estimation, this method is straightforward, and the moment generating 

functions can get finite forms for solving beta parameters estimation. There are 

published studies that report the usage of method of moments for beta mixture 

distributions [149, 153]. With the framework of EM algorithm, the application of 

method of moments is used instead of ML estimation in the M-step to estimate the 

update parameters until the estimation get the convergence [149]. In this chapter, the 

approach of EM algorithm with method of moments was used to develop the model to 

estimate the parameters of the predicted data from NetMHCpan4.1 and MHCflurry 

instead of maximum likelihood estimation. The implementation of the EM algorithm 

with method of moments for beta mixture parameters estimation is entirely described 

in Section 4.11. 
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CHAPTER 4  

MATERIALS AND METHODS 

4.1 Patient samples and sample preparation for DNA/RNA sequencing 

The biospecimen samples were collected from nine colorectal cancer patients. The 

sample collection and preparation were done by research staff at Chulalongkorn 

University System Biology Centre (CUSB), Bangkok, Thailand. Tumour and blood 

samples were obtained from study participants in King Chulalongkorn Memorial 

Hospital, Bangkok, Thfigureailand. Tumour tissue and blood from each patient were 

collected immediately after surgery resection. The method of Ficoll-Paque (GE 

Healthcare, United States) density gradient centrifugation was used to isolate PBMCs 

from a blood sample, PBMCs were cryopreserved with 10 µl RNAlater solution 

(Qiagen, Germany). Tumour tissue was chopped to a size of 1 mm3, then 0.5 mL 

RNAlater solution was added prior to storage at -80 °C. The fresh frozen tumour 

tissues were minced into small pieces, and then 20 µl Proteinase K (Qiagen, 

Germany) was added. The mixture of tissue and proteinase K were incubated at 56 °C 

with agitation for 30 min. After an incubation period, the samples were centrifuged at 

12,000 g for 3 min, the supernatant fraction was collected and transferred to two 

RNase free microcentrifuge tubes for DNA and RNA isolation. Tumour and normal 

DNA molecules were isolated from tissue lysate and PBMCs by DNA isolation kit 

(Qiagen DNeasy kit, Germany). The amount of DNA was quantified using DNA 

Quantitation Kit with the fluorescent technique (Merk, United States), to ensure there 

was sufficient DNA for exome sequencing: higher than 200 ng in 50 µl. RNA from 

tissue lysate was extracted using RNeasy kit (Qiagen, Germany), the quality control 
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of RNA for the sequencing experiment was performed by the sequencing company. 

The library of DNA and RNA were prepared, and nucleotide sequencing was 

performed by the Vishuo company (Vishuo Biomedical, Singapore). Briefly, genomic 

DNA was extracted and ligated with barcode Illumina sequencing adapters, then DNA 

sequences were amplified, and short reads with 100-200 nucleotides were enriched. 

Whole exome capture was performed using an Agilent SureSelect Human All Exon 

V6. The libraries were then qPCR quantified, pooled, and sequenced with 150 base-

paired-end reads using HiSeq 2000 sequencers (Illumina, United States). 

4.2 Preparation of input data for MuPeXI 

MuPeXI requires peptide sequences and MHC types (i.e. HLA allele) as mandatory 

inputs, but gene expression levels are optional. Thus, WES and RNA sequencing data 

are needed to process to determine non-synonymous somatic mutations, HLA alleles, 

and gene expression level (Figure 4.1).  

a.) Sequencing data pre-processing  

The FASTQ file of WES data was initially processed to remove adapter sequences by 

Cutadapt, and Fastqc was used to evaluate the data quality [154, 155]. Then, 

sequencing data without adapter reads were aligned with the reference genome 

(GRch38) using BWA with mem option (BWA-mem) [71], and a read group was 

defined for each sample for the variant calling step. Picard tools with MarkDuplicates 

option was used to remove redundant reads [75]. Indel realignment and base 

recalibration were performed with GATK workflow [156].  

b.) Determination of non-synonymous somatic mutation 
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The analysis-ready reads of tumour and normal samples from a step above was used 

to detect somatic mutations by Mutect2 [77]. Somatic mutations including point 

mutations, small insertions/deletions and frameshift mutations were identified, then 

list of somatic mutations with detail in columns were return in a VCF file format. 

Non-synonymous mutations in the VCF file were further annotated using VEP [157]. 

c.) HLA genotyping 

HLA class I alleles were determined from normal WES using the HLA typing tool, 

called Athlates [158]. The algorithm aligns normal WES to the reference of HLA 

class I sequences, including A, B, and C loci, from the IMGT database [11]. The 

alignment coverage and Hamming distance are calculated to a similarity score. Two 

HLA alleles with the first two sets of digits of each locus that have the highest percent 

coverage and lowest Hamming distance were selected.  

d.) Gene expression quantification  

RNA sequencing data was quantified as the level of gene expression in Transcripts 

per Kilobase Million (TPM) by Kallisto, which returns expression level of each gene 

in a table with a tab-separated values (TSV) format [90].   

4.3 Neoantigen identification using MuPeXI pipeline and candidate neoantigen 

prioritisation 

Somatic mutations in a VCF file, list of HLA alleles, and TPM level of each transcript 

in a TSV file were used as inputs for the neoantigen prediction pipeline, MuPeXI 

[112] (Figure 4.1). This workflow was designed to predict neoantigens based on 

binding affinity between peptides and specific HLA alleles using NetMHCpan3.0 

predictor [159], and a ranking score for an individual peptide is computed by a built-
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in multiplicative function, which calculates a prioritisation score based on predicted 

binding affinity, similarity between mutated peptides and their self-counterpart, 

mutant allele frequency, and gene expression level. MuPeXI returns the full set of 

identified neoantigens in a tabular format containing several informative annotations 

and ranking scores. The predicted results with available gene expression level, 

candidate neoantigens were chosen by the criteria of IC50 < 500 nM and TPM ≥ 1. 

However, in this study, RNA sequencing data are not available in some patients, in 

that case, only predicted IC50 values is the only data available to characterise binding 

and non-binding peptides. In the clinical study, there are about 20-30 candidate 

peptides further selected for downstream experiments, therefore, using predicted 

binding affinity scores without gene expression level is not sufficient to rule out non-

neoantigens. Therefore, to create a shortlist of candidate peptides for the cases that do 

not have gene expression information, the prioritisation system is set on the basis of 

binding affinity and the potential for being an immunogenic peptide relying on a 

difference from self-peptides, following approaches define in the work from Ott P.A. 

et al., in 2017 [44]. The potential epitopes with predicted IC50 < 500 nM were chosen 

for inclusion based on a pre-defined set of criteria in the following rank order: (1) The 

binding epitopes with frameshift, insertion, or deletion. These mutation types alter 

more than one amino acid in the peptides, which is likely to make greater differences 

between mutated peptides and their self-counterparts; (2) The increased binding 

affinity epitopes with somatic single nucleotide variations at the HLA anchor residues 

(position of 2 and 9), which can imply that peptides have never been presented by 

MHC molecule to T cells; (3) The very high MHC binding peptide (less than 150 nM) 

with somatic single nucleotide variations at non-anchored residues. 
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Figure 4.1 Analysis workflow of neoantigen identification based on genomic 

sequencing data and MHC-peptide binding affinity prediction. 

4.4 Molecular dynamics (MD) simulation 

The candidate peptides identified by the MuPeXI workflow were used in the MD 

experiment. A set of 9mers peptides presented by HLA-A*02:01 from a patient who 

express HLA-A*02:01 alleles which is Sample 6 (see Table 4.1) that have high 

predicted binding affinity and high gene expression level were selected for MD 
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analysis, totalling seven candidate peptides. The 3D structure of HLA-A*02:01 with a 

9mers peptide was downloaded from Protein Data Bank (PDB), the structure ID is 

3QEQ [160]. The two peptides with low binding affinity (predicted IC50 > 40,000 

nM) and having negative charge residues at anchor positions were selected as a 

negative control group (Table 4.1). The complex of HLA-A*02:01 and each peptide 

were constructed by changing chemical elements of amino acids in the template 

peptide to the mutated peptide in Table 4.1 using the Discovery studio 2.5 [161]. 

Finally, there are ten systems of HLA-A*02:01/peptide complex for performing MD 

simulation, which are an HLA-A*02:01/template, seven complexes of HLA-

A*02:01/candidate peptide, and two complexes of HLA-A*02:01/negative control 

peptide. All complexes were defined with the protonation state of each residues at pH 

7.4 via the PROPKA3 [162].  

In the step of MD simulation run, the module called Leap in Assisted Model Building 

with Energy Refinement (AMBER) version 14 was used to add the missing atoms and 

hydrogen atoms [163]. The complex structures were solvated in a 25 Å radius, with 

TIP3P model for water molecules. The isothermal-isobaric (NPT) ensemble with 

constrained number of atoms (N), pressure (P) and temperature (T) was applied in a 

periodic boundary. The AMBER 14 program with SANDER module was used to 

minimise all water molecules in the protein complexes. MD simulation was 

performed using the pmemd.cuda module with the ff03 force field  in AMBER 14 for 

all complexes, and snapshots were stored every 0.2 ps during a trajectory of 100 ns. 

For the analysis part, the MD trajectories in the production phase were collected for 

analysis of complex stability, binding free energy, and binding free energy 

decomposition. The approach of Molecular Mechanics/Generalized Born Surface 
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Area (MM-GBSA) was used to estimate the binding free energy of a ligand to protein 

[164]. 

Table 4.1 Peptides for molecular dynamic simulation 

Sample Peptide Predicted IC50 (nM) 

tem AAGIGILTV 2254.35 

c1 YMNDINCRM 12.4 

c2 LLLGLLLFL 16.5 

c3 SLPQLTHEV 25.3 

c4 ILHHLGQEV 94.4 

c5 LLGGTALLL 121.2 

c6 SMTVRTTPV 179.2 

c7 VMHNYRNLV 234.2 

nc1 KEERDDDTD 49326.2 

nc3 PRVRDNYRD 49203.1 

Tem = a peptide from crystal structure (3QEQ); c = candidate peptides from MuPeXI 

prediction; nc = non-candidate peptides 

4.5 Random peptide data sets 

The random peptides generated from the human proteome were assumed to model as 

false data points (non-binding peptides) for the study of MHC-peptide binding 

predictors. Since 9mers have the highest preference for MHC class I binding groove, 

a set of random 9mers peptides was created. The human proteome from UniProt 

(www.uniprot.org) database [165] was processed to produce 9mers peptides via a 

sliding window approach, different by one amino acid at a time. The total unique 

9mers peptides from human proteome is 12 million. The five data sets of random 

peptides were generated by random selecting 10,000 peptides per data set from whole 

human peptides data set. 

4.6 MHC-peptide prediction using NetMHCpan4.1 and MHCflurry 

Each random data set was predicted against the 79 alleles of MHC class I, which are 

supported in both MHCflurry and NetMHCpan4.1. An input file was prepared from 
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each random data set with each HLA allele, and those input files were predicted the 

MHC-peptide binding affinity by NetMHCpan4.1 and MHCflurry from a stand-alone 

software package by the command line for each specific HLA allele. For 

NetMHCpan4.1, the prediction was performed with the default model. With using 

MHCflurry, the model of MHCflurry 1.2.0, which has been built by binding affinity 

data combined with MS data for model selection, was utilised as the predictor. To 

select predicted binding peptides, the fixed thresholds were used to cut off the 

predicted results. The NetMHCpan4.1 documentation recommends using the % rank 

rather than the IC50 value, but most studies select the binding peptides based on the 

predicted IC50 [3, 102]. Therefore, both values were used to distinguish binder from 

non-binder peptides. With using the IC50, the threshold value is <500 nM, whereas the 

threshold of the % rank is <2%. Finally, there were two sets of the binder result, i.e. 

selecting binders with (i) less than 500 nM and (ii) less than 2% rank, per allele per 

prediction tool. The number of peptides that passed the criteria were calculated as the 

percentage of binders.  

4.7 Collection of MHC bound peptides derived from mass spectrometry (MS) 

analysis 

Data sets of MHC-bound peptides derived from MS analysis were downloaded from 

the IEDB (https://www.iedb.org/) [64]. Human peptides identified from MS and 

bound to HLA-A, -B, and -C were collected. Other eluted peptides from MHC class I 

“mono-allelic cells”, i.e. presented peptides from cells carrying a single HLA allele, 

were collected from several publications of immunopeptidomics studies [101, 166-

168]. Peptides for each HLA allele from those sources were combined, and redundant 

peptides were removed. Only peptides with lengths of 8, 9, 10, and 11 mers were 
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retained. However, the majority of peptide length in the collected data was found as 

9mers peptides for all HLA alleles. HLA alleles that had ≥1000 9mers peptides were 

collected for onward analysis, totalling 85 HLA alleles covering HLA-A, -B, and -C. 

Additionally, the “multi-allelic data sets”, i.e. a set of peptides presented by cells 

carrying several alleles, were obtained from the data set contains naturally presented 

HLA class I ligands derived from chronic myeloid leukemia (CML) patients [169].  

4.8 Generation of MS-random peptides data sets 

To generate the mixture of predicted scores of MS and random peptides, the data set 

of true binding peptides were combined with random peptides, where the method of 

random peptide generation was described in Section 4.5, in a ratio of 1000 MS to 

4000 random peptides. The true binders were sourced from the 85 mono-allelic data 

sets containing MS identified data sets where peptides presented by genuine MHC 

alleles were presented. The predicted MHC-peptides binding affinity was performed 

by NetMHCpan4.1 with a command line using a stand-alone software package. 

4.9 Generating the data sets from the statistical models 

The simulated data sets of normal and beta distributions were generated by the 

random function of those statistical models using packages in Python. For the normal 

distribution, the data sets were simulated from the function of 

numpy.random.normal(𝜇, 𝜎2, size), and the function of numpy.random.beta(𝛼, 𝛽, 

size) was used to generate the data sets for the beta distribution. The input parameters 

for those models were computed from the template data, which are predicted results 

of MS-random peptides data sets. The statistical values including 𝜇 and 𝜎2 were 

calculated and were taken to calculate beta parameters using Eq. 3.15 and 3.16. 
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4.10 Similarity measure 

Linear regression was performed between the simulated and the scaled predicted 

score distribution. The resulting R-squared (R2) statistics were used to evaluate the 

similarity between the two distributions. Since the simulated beta distributions lie the 

interval [0, 1], the binding affinity scores (log10 IC50) were scaled to the same interval 

by diving the predicted scores by the maximum value for each data set. 

 

4.11 The modified EM algorithm with the iterated method of moments for the 

beta mixture model 

The parameter estimation algorithm for beta mixture was built by a Python script. The 

algorithm was proceeded iteratively as in the basis of the EM algorithm. The 

algorithm consists of four major steps including initialisation, expectation, 

maximisation, and termination. For each iteration, parameters (𝜃) including two 

mixture proportions (𝜋1, 𝜋2), two means (𝜇1, 𝜇2), and two variance values (𝜎1
2, 𝜎2

2) 

were estimated for two components. However, in this work, the step of parameter 

estimation was computed by Pearson’s method of moment instead of the 

maximisation of likelihood, thus, the maximisation step (M-step) was replaced by a 

method of moments estimation step (MM-step) [149].   

Initialisation 

As the distribution of predicted scores is a bimodal, thus, two was defined as number 

of components. The initial mixture proportion (𝜋) of each component j was initially 

set as 0.5. The initial mean and variance (𝜇𝑗 , 𝜎𝑗
2) were calculated from the data of 
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each component, and the initial values of 𝛼𝑗 and 𝛽𝑗 were then computed according to 

Eq. 3.23 and 3.24. 

𝛼𝑗 = (
1−𝜇𝑗

𝜎𝑗
2 −

1

𝜇𝑗
) 𝜇𝑗

2   ____________ (3.23) 

𝛽𝑗 = 𝛼𝑗(
1

𝜇𝑗
− 1)   ____________ (3.24) 

Expectation (E-step) 

The expected responsibility weight (Wi, j) of each component j and data point xi was 

estimated from the probability density function of the current estimates for beta 

distributions (𝛼𝑗
𝑡, 𝛽𝑗

𝑡) and the mixture proportion 𝜋𝑗
𝑡 (Eq. 3.25). 

𝑊𝑖,𝑗
𝑡 =

𝜋𝑗
𝑡(𝑓(𝑥𝑖 ; 𝛼𝑗

𝑡,𝛽𝑗
𝑡))

∑ 𝜋𝑗
𝑡𝑓(𝑥𝑖 ; 𝛼𝑗

𝑡,𝛽𝑗
𝑡)𝑘

𝑗=1

, where 𝑓(𝑥 ; 𝛼, 𝛽) =
𝛤(𝛼+𝛽)

𝛤(𝛼)𝛤(𝛽)
∙ 𝑥𝛼−1 ∙ (1 − 𝑥)𝛽−1    ____________ 

(3.25)  

Method of moments estimation (MM-step) 

For each component j, the mixture proportion is updated based on the new values of 

responsibility weights 𝑊𝑖,𝑗
𝑡  according to Eq. 3.26. Then, component’s mean and 

variance and the beta distribution parameters are updated using the method of 

moments (Eq. 3.27-3.30). 

𝜋𝑡+1
𝑗 =  

1

𝑛
∑ 𝑊𝑖,𝑗

𝑡𝑛
𝑖=1     ____________ (3.26) 

𝜇𝑗
𝑡+1 =

∑ 𝑊𝑖,𝑗
𝑡𝑛

𝑖=1 ∙𝑥𝑖 

∑ 𝑊𝑖,𝑗
𝑡𝑛

𝑖=1

    ____________ (3.27) 

(𝜎𝑗
2)

𝑡+1

=
∑ 𝑊𝑖,𝑗

𝑡 ∙(𝑥𝑖−𝜇𝑗
𝑡+1)

2
𝑛
𝑖=1

∑ 𝑊𝑖,𝑗
𝑡𝑛

𝑖=1

   ____________ (3.28) 

𝛼𝑗
𝑡+1 = (

1−𝜇𝑗
𝑡+1

(𝜎𝑗
2)

𝑡+1 −
1

𝜇𝑗
𝑡+1) (𝜇𝑗

2)
𝑡+1

  ____________ (3.29) 
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𝛽𝑗
𝑡+1 = 𝛼𝑗

𝑡+1(
1

𝜇𝑗
𝑡+1 − 1)    ____________ (3.30) 

In this step, the estimated beta parameters for the beta 2 component were further 

constrained by the ranges of values calculated from the data sets of various sizes 

(10000, 5000, 1000) of predicted binding affinity scores from random peptides with a 

length of 8, 9, 10, and 11 mers against 85 HLA alleles. The purpose of this restriction 

was to ensure that the beta 2 component of the mixture model is certain to capture the 

false data. Moreover, to ensure the beta 1 component is not fitted to the wrong 

distribution when presented with all false data, the estimated parameters of the first 

component are restricted if the estimated π1= 1 and size of the negative set ≠ 0 

(predicted IC50 > 10000 nM) i.e. indicating that there is only one distribution found, 

and there are data points in the plausible range for false data. In this case, the ranges 

of α and β for the first beta component were initially calculated from data points with 

predicted IC50 ≤ 10000 nM using Eq. 3.23 and 3.24, and the range of values are only 

allowed to deviate 25% from the initial estimates. In practice, these two constraints 

mean that when the algorithm detects evidence a very large imbalance, in either 

direction (i.e. all true or all false), the beta 1 or beta 2 is correctly fitted to the 

appropriate distribution. 

Termination 

The parameter updates (E-step and MM-step) were repeated until the maximal 

absolute changes in parameter values, kt, between step t and t + 1 is less than 0.00001 

(Eq. 3.31). 

𝑘𝑡 = 𝑚𝑎𝑥 ({
|𝛼𝑗

𝑡+1−𝛼𝑗
𝑡|

𝑚𝑎𝑥 (|𝛼𝑗
𝑡+1|,|𝛼𝑗

𝑡|)
,

|𝛽𝑗
𝑡+1−𝛽𝑗

𝑡|

𝑚𝑎𝑥 (|𝛽𝑗
𝑡+1|,|𝛽𝑗

𝑡|)
,

|𝜋𝑗
𝑡+1−𝜋𝑗

𝑡|

𝑚𝑎𝑥 (|𝜋𝑗
𝑡+1|,|𝜋𝑗

𝑡|)
, 𝑗 = 1,2}) ___________ (3.31)                  
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4.12 Testing the EM beta mixture model with the predicted data sets 

The resulting peptide set of 85 HLA alleles in Section 4.8 was run through 

NetMHCpan4.1 for each the specific HLA allele. The predicted scores of each HLA 

allele were used as an input data for the estimator model to estimate beta parameters 

of true (MS) and false (random) data distributions. The correctness of estimation was 

measured by the relative change between the defined mixture proportions and their 

estimated values. The similarity between real and simulated data generated by 

estimated parameters was measured by the linear regression analysis yielding R2 

statistics. Moreover, Kolmogorov-Smirnov (KS) test was used to detect the difference 

between the real and simulated data sets, the significant threshold was set at p-value < 

0.05.  Moreover, for testing a robustness of the estimator model, a wider range of data 

sets with unknown true binding or non-binding peptides were used to test the model, 

and the accuracy of FDR and PEP values were observed. 

4.13 Calculation of FDR and PEP for predicted scores 

The estimated beta parameters were utilised to calculate values of FDR and PEP of an 

individual predicted score in the data set using Eq. 3.32 and 3.33, respectively. The 

number of false and true positive were estimated by the CDF of the beta distribution 

while density at true and false were estimated by the PDF of the beta distribution. 

𝐹𝐷𝑅𝑥𝑖
=

𝐹𝛼𝑓𝑎𝑙𝑠𝑒,𝛽𝑓𝑎𝑙𝑠𝑒(𝑥𝑖)

𝐹𝛼𝑡𝑟𝑢𝑒,𝛽𝑡𝑟𝑢𝑒(𝑥𝑖)+𝐹𝛼𝑓𝑎𝑙𝑠𝑒,𝛽𝑓𝑎𝑙𝑠𝑒(𝑥𝑖)
   ____________ (3.32) 

𝑃𝐸𝑃𝑥𝑖
=

𝑓𝛼𝑓𝑎𝑙𝑠𝑒,𝛽𝑓𝑎𝑙𝑠𝑒(𝑥𝑖)

𝑓𝛼𝑡𝑟𝑢𝑒,𝛽𝑡𝑟𝑢𝑒(𝑥𝑖)+𝑓𝛼𝑓𝑎𝑙𝑠𝑒,𝛽𝑓𝑎𝑙𝑠𝑒(𝑥𝑖)
 ____________ (3.33) 
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4.14 Epitopes and non-epitopes data collection 

This aim of this model was to classify immunogenic and non-immunogenic peptides 

on MHC class I molecules. These peptides were obtained from ‘tcell_full_v3.csv’ 

downloaded from IEDB [134] with the following inclusion criteria: linear epitope, 

9mers in length, MHC class I, non-human parent peptides, and any host species 

(Table 4.2). In this study, the determination of true neoantigens of human cancer is 

emphasised, thus, only non-human parent peptides, as shown in Table 4.2, were 

retained for training data to avoid the bias from matching self-proteins obtained from 

blasting peptides against to human proteome. Epitope and non-epitope peptides were 

labelled as “positive” and “negative”, respectively. 
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Table 4.2 Summary of parent species, host species, and experimental assays of 9mers 

peptides specific MHC class I collected from IEDB 

  Positive Negative 
 

(n = 2127) (n=5042) 

Parent Species     

Homo sapiens 430 326 

Non-Homo sapiens 1697 4716 

Host Name     

Homo sapiens 1514 1708 

Mus musculus 563 3497 

Pan troglodytes 12 12 

Sus scrofa 13 7 

Equus caballus 5 0 

Macaca mulatta 15 139 

Gallus gallus 2 14 

Rattus norvegicus 2 25 

Oryctolagus cuniculus  1 0 

Assay group     

qualitative binding 589 219 

cytotoxicity 386 423 

IFN-γ release 1058 4704 

proliferation 23 35 

dissociation constant KD 20 0 

granzyme B release 27 1 

TNF release 2 3 

activation 17 12 

pathogen burden after challenge 2 2 

T cell help 1 0 

CCL4/MIP-1b release 2 0 

disease exacerbation 0 1 

degranulation 0 2 

 

4.15 Generation of data sets with matching binding affinity scores 

We first analysed the MHC binding affinity of peptides within the training set, a 

priori classified as immunogenic and non-immunogenic. Data sets containing 

immunogenic peptides are biased towards containing peptides that are also strong 

MHC binders (Figure 4.2, the top panel) i.e. median log10 IC50 = 1.93 (positive) vs 
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2.67 (negative). Given that there are already reliable predictors for MHC-peptide 

binding, and statistics developed via MHCVision (covered in Section 5.2), in this 

work we aimed to train a peptide immunogenicity model that is statistically 

independent of whether a peptide is predicted to be bound by MHC. As such, to 

prevent the bias being introduced by features that predict binding and non-binding 

properties, the data distributions of predicted MHC-peptide binding affinity between 

epitopes and non-epitopes data were divided into 20 bins, and the distribution of both 

data sets was standardised for every bin by sub-sampling predicted binding affinity 

scores within the same range for both epitopes and non-epitopes data (Figure 4.2, the 

bottom panel). The final data for training and testing consisted of 1,146 immunogenic 

peptides and 1,356 non-immunogenic peptides, with near identical distributions of 

peptide binding affinity, as predicted by NetMHCpan. These peptide sets are biased 

towards those with high-binding affinity e.g. ~70% of both sets (71% for positive and 

72% for negative) have IC50 < 500 nM (log10 IC50 < 2.7), indicative of being strong 

binders, but ~30% of the data are relatively weak binders or non-binders. The 

rationale for this approach is to learn features that will be useful for determining 

immunogenicity, unrelated to peptide affinity and MHC binding, working under the 

assumption only peptides will be tested for immunogenicity if they are a reasonable 

peptide binding affinity from another tool. 
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Figure 4.2 Matching data distributions of predicted MHC-peptide binding affinity of 

immunogenic and non-immunogenic peptides. The upper panel shows histogram (left) 

and boxplot (right) for log10 IC50 values derived from NetMHCpan for all peptides 

in the set. The bottom panel shows the same after sub-sampling from score bins to 

match score distributions between the positive and negative training set.     

4.16 Construction of physicochemical properties for immunogenicity features 

The physicochemical properties were selected based on the properties have been 

studied in immunodominant peptides and reported by the previous studies. Those 

properties include molecular weight, bulkiness, entropy, hydrophobicity, polarity and 

charge, and other properties related to binding interaction e.g. side chain orientation, 

bonded energy per residue [113, 142]. The scores of each property for 20 amino acids 

were obtained from the AAindex database [170]. The redundant physicochemical 

properties in the AAindex database were defined by their strong correlation 
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(Pearson’s correlation test) with the absolute correlation coefficient ≥ 0.9. There are in 

total 18 selected physicochemical properties, shown in Table 4.3. Each property 

consists of ten features, which are nine features from nine residues and one feature 

from summation of all residues in a peptide, and two features from similarity features 

including BLAST score and mismatched number(s) (Table 4.4).
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Table 4.3 The physicochemical properties obtained from the AAindex database 

Physicochemical 

property 
Index Description 

Entropy 

HUTJ700103 Entropy of formation (Hutchens, 1970) 

KRIW790102 
Fraction of site occupied by water (Krigbaum-Komoriya, 

1979) 

Hydrophobicity 

EISD860102 
Atom-based hydrophobic moment (Eisenberg-

McLachlan, 1986) 

EISD840101 
Consensus normalized hydrophobicity scale (Eisenberg, 

1984) 

EISD860103 
Direction of hydrophobic moment (Eisenberg-

McLachlan, 1986) 

GOLD730101 Hydrophobicity factor (Goldsack-Chalifoux, 1973) 

BLAS910101 
Scaled side chain hydrophobicity values (Black-Mould, 

1991) 

PRAM900101 Hydrophobicity (Prabhakaran, 1990) 

FAUJ880103 Normalized van der Waals volume (Fauchere et al., 1988) 

Binding 

interaction 

OOBM770102 
Short and medium range non-bonded energy per atom 

(Oobatake-Ooi, 1977) 

KRIW710101 Side chain interaction parameter (Krigbaum-Rubin, 1971) 

OOBM770103 
Long range non-bonded energy per atom (Oobatake-Ooi, 

1977) 

Polarity 

ZIMJ680104 Isoelectric point (Zimmerman et al., 1968) 

GRAR740102 Polarity (Grantham, 1974) 

ZIMJ680103 Polarity (Zimmerman et al., 1968) 

Size 

FASG760101 Molecular weight (Fasman, 1976) 

DAWD720101 Size (Dawson, 1972) 

CHAM830103 
The number of atoms in the side chain labelled 1+1 

(Charton-Charton, 1983) 
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4.17 Similarity properties of peptides 

“Foreignness” is a crucial factor to trigger the host immune system since only non-

self-peptides can be recognised and stimulate host’s T cells. Therefore, the similarity 

between immunogenic peptides and the host’s proteome was created as one of 

features for epitope and non-epitope classification. Peptides for training the model 

were searched against their host proteome using Basic Local Alignment Search Tool 

(BLAST) with a stand-alone version 2.7.1. The optimal searching parameters are 

shown in Table 4.5. The best matched peptide was defined by the highest similarity 

score with 9mers in length and no gap. The similarity score and number of 

mismatches of the best matched peptide were selected as similarity features for the 

model.  

Table 4.5 Input parameters for BLAST search 

Option Parameter Description 

program blastp Compare a protein query to a protein database 

task name blastp-short Optimized for queries shorter than 30 residues 

evalue 10^6 Expect value (E) for saving hits 

word_size 2 (default) Length of initial exact match 

matrix PAM30 (default) A scoring matrix 

4.18 The Random Forest classification model and model evaluation 

For creating the Random Forest classification model, RandomForestClassifier from 

Scikit-learn packages was implemented in Python 3.7 to build the model from training 

data. The Random Forest machine learning package in Scikit-learn provides 

automatic iterative selection of optimal parameters; n_estimator = 100, and other 

parameters were set as default. The performance of the model was evaluated by the 

area under a curve (AUC) of a receiver operating characteristic (ROC) curve. The 
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function named roc_curve was used to generate ROC, and the AUC score was 

computed by the auc function in Scikit-learn packages. The cross validation was 

performed by cross_val_score function with a parameter cv=10. Furthermore, the F1 

scores that contributes to a weighted average of the precision and recall was also 

reported, where the best value is 1 and the worst value is 0. 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)
 

TP = number of true positives 

FP = number of false positives 

FN = number of false negatives 

4.19 Feature selection  

Feature selection is the process of reducing the number of input variables for 

predictive model development since fewer input variables can help to reduce the 

complexity of the algorithm and make it more understandable. The process of 

selection involves evaluating the relationship between each input variable and the 

target variable using statistical methods to select those input variables that have the 

strong relationship with the target variable. In this work, the feature screening results 

were generated in Python 3.7 using the function called SelectFromModel in the 

Scikit-learn packages. In this work, the estimator for this function is the 

RandomForestClassifier algorithm, and the threshold for feature selection was set as 

default, which is the mean of all feature importance values. The feature selection was 

performed iteratively, for the first iteration, features whose importance value is 

greater than or equal to the mean importance of all features are kept for the next 

iteration. Then, selected features from the second iteration were combined to a set 
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from the first iteration, these steps were repeatedly performed until the number of 

features are less than 30 and the stationary phase is reached (getting the same number 

of features > 10 iterations). 

4.20 Calibrating predicted probability and constant value estimation 

The predicted probability of each class was obtained from predict_proba function. To 

calibrate the probability scores produced by the Random Forest model, the logistic 

regression function (Eq.3.34) was used to transform pseudo-probability to calibrated 

probability. 

Given pseudo-score data X = {x1, x2,…xi} and calibrated probability data Y = {y1, 

y2,…yi} 

𝑦𝑖 = 𝑛 +
1

1+𝑒−𝑎𝑥𝑖+𝑏   ____________ (3.34) 

The constant values including a, b, and n were estimated by curve_fit(sigmoid, X,Y) 

function from Scipy packages in Python 3.7. The constant values estimation was 

performed from different sizes of testing data (20%, 30%, and 40%). 

4.21 Decision tree interpretation 

Interpreting the basis for prediction a model is important to check the reliability, i.e. 

does the combination of features make sense, and allows decomposing successful 

prediction to understand any bias and feature contribution. The feature contribution 

result was generated by treeinterpreter, which is a library that computes contribution 

values of each feature on prediction for tree-based models of Scikit-learn including 

RandomForestClassifier. 
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4.22 Software implementation and client software requirement 

MHCVision-RF was built by integrating MHCVision and the immunogenicity 

prediction model, and the program was implemented using Python version 3.7. The 

software is non-graphical user interface and can be run on Unix operating system 

using the command line. The following programs and packages in Python are required 

for optimal processing.  

a.) Python with version 3.7 onward and the following Python packages (Table 4.6) 

Table 4.6 Python packages and their versions for client requirement 

Package Version 

numpy ≥ 1.19.1 

pandas ≥ 1.1.2 

scipy ≥ 1.5.2 

scikit-learn ≥ 0.23.2 

 b.) Standalone BLAST for Unix (version 2.7.1) 

The installation process for Mac OSX, Windows, and Linux can be found in Tao T., 

2008 [171].  

4.23 Observation of the relationship between true MHC binding probability and 

immunogenicity probability 

The relationship between true MHC binding probability and immunogenicity 

probability was observed using a data set of 1000 9mers peptides generated from 

human proteome. MHC-peptide binding affinity prediction was made by NetMHCpan 

4.1 against to HLA-A*02:01, and true MHC binding probability were estimated using 

MHCVision. The immunogenicity of each peptide was predicted using the Random 
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Forest model described in Section 5.3. The linear regression model was used to 

evaluate the correlation between those two probability scores. 

4.24 Generation of validating data from published neoantigen data 

The data sets of peptides with the experimental validation of T cell reactivity towards 

predicted neoantigens from two previous published studies were used to validate the 

ranking score produced by MHCVision-RF. In the study from Patrick Ott et al., 2020 

[172], candidate neoantigens were selected based on bioinformatic analysis and 

MHC-peptide binding predictions, and IFN-γ ELISpot assay was used to validate the 

immunogenicity of peptides. From this study, peptides with 9-11mers of two 

melanoma patients (M1 and M3) and a lung cancer patient (L7) were applied to 

MHCVision-RF.  Only data from these three patients were selected because their 

HLA alleles are reported in Figure S4 of the original paper [172]. The raw data of 

peptides from M1, M3, and L7 patients can be found in the supplementary data1 in the 

original paper of Patrick Ott et al., 2020. 

Furthermore, data sets of patients from the study of Yong Fang et al., 2020 [173] 

including P001 (Melanoma), P003 (Adrenal Sebaceous Adenocarcinoma), P004 

(Small Cell Lung Cancer), P011 (Ovarian Cancer), and P016 (Non-Small Cell Lung 

Cancer) were selected to test the pipeline. The raw data of peptides from P001, P003, 

P004, P011 and P016 patients can be found in the supplementary tables2 in the 

original paper of Yong Fang et al., 2020. In this study, they reported designed 

 
1 https://ars.els-cdn.com/content/image/1-s2.0-S0092867420311417-mmc2.xlsx 

2 

https://clincancerres.aacrjournals.org/highwire/filestream/182017/field_highwire_adjunct_files/0/228188_3_supp_6278638_

q9vzyf.xlsx 

 

https://ars.els-cdn.com/content/image/1-s2.0-S0092867420311417-mmc2.xlsx
https://clincancerres.aacrjournals.org/highwire/filestream/182017/field_highwire_adjunct_files/0/228188_3_supp_6278638_q9vzyf.xlsx
https://clincancerres.aacrjournals.org/highwire/filestream/182017/field_highwire_adjunct_files/0/228188_3_supp_6278638_q9vzyf.xlsx
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peptides for synthesis which are long peptides (25-30 amino acids) and used IFN-γ 

ELISpot assay to test T cell reactivity of candidate peptides. To imitate the step of 

short peptide preparation for neoantigen prediction, those long peptides were cut to 

9mers via a sliding window method. A set of 9mers peptides of each patient were then 

applied to MHCVision-RF 
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CHAPTER 5 

RESULTS 

5.1 The study of neoantigen prediction using existing bioinformatics software 

and public MHC-peptide binding affinity prediction tools 

There are several neoantigen identification pipelines that have been launched in recent 

years as shown in the Table 3.2. Those tools perform neoantigen identification based 

on genomic sequencing data and MHC-peptide prediction. Those existing automated 

workflows generally requires a VCF file, list of MHC alleles and a table of gene 

expression levels as inputs. A list of mutated peptides of multiple lengths are usually 

generated via customised code of those existing tools prior to taking those peptides 

and MHC types to the MHC-peptide binding prediction tool. Most current workflows 

launched from 2017 onward have an amended prioritisation model to return a ranking 

score for each peptide that is useful for selecting candidate neoantigens for 

downstream experiments. In this section, the identification of neoantigens from WES 

and/or RNA sequencing data from colon cancer patients was performed using existing 

bioinformatic tools and a neoepitope prediction workflow called MuPeXI [112] to 

demonstrate the proof of concept and test the tools. Beyond the sequence analysis, a 

structural based analysis was also demonstrated to explore the quality of the 

predictions; peptides with high predicted binding affinity from the MuPeXI prediction 

were selected for the energetic analysis based on the structure model of MHC-

peptides using the molecular dynamics (MD) simulation technique.  
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In summary, the aims of this section are to demonstrate the practicability of 

approaches for neoantigen prediction using both sequence analysis with a publicly 

available pipeline and a structural based analysis. This section also explores the rate 

of false positive answers from MHC-peptide binding predictors i.e. NetMHCpan4.1 

and MHCflurry, as a potential source of error in the analysis. 

5.1.1 The neoantigen identification-based sequence analysis using the publicly 

available tools 

Variant calling analysis from matched tumour and normal WES data showed different 

number of somatic mutations among different patients. The number of non-

synonymous somatic mutations across nine colorectal cancer patients ranged between 

10 to 400 mutations indicating that even amongst the same type of cancer, the 

diversity of genetic mutation is individualised. Most mutations come from missense 

mutations which alter only one amino acid whereas the small insertions/deletions or 

frameshift mutations rarely occurred (Table 5.1). The alleles of HLA class I including 

A, B, and C loci of an individual patient were identified from normal WES data using 

the HLA genotype algorithm as described in Section 4.2. Each patient has at least 

three different alleles for A, B, and C loci and a maximum of six different alleles; two 

alleles per locus (Table 5.2). Among nine samples, the highest frequency HLA class I 

alleles for A, B, and C loci are A*33:03, B*40:01, B*46:01, and C*01:02 respectively 

(Figure 5.1).  
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Figure 5.1 The frequency of HLA class I alleles from nine colorectal cancer patients 

A variant file and list of HLA alleles of each patient were taken as inputs to MuPeXI. 

For only Samples 6 and 8 were RNA expression level available. The program 

returned the results table including predicted IC50 from mutated peptides and their 

normal counterparts, variant information, RNA expression level in TPM, and ranking 

score calculated from the built-in model in MuPeXI software. However, seven of nine 

samples do not have RNA sequencing data. As discussed above, a predicted binding 

affinity score alone is not sufficient for making a shortlist of candidate neoantigens. 

Therefore, the prioritisation criteria described in Section 4.3 was used to filter and 

select candidate neoantigens on the basis of capability of MHC binding and the 

immunogenicity potential characterised by similarity between mutated peptides and 

their self-counterparts. It was found that the number of candidate neoantigens that 

pass filtered criteria vary across different patients (Table 5.3). It can also be observed 

that transcriptomic data can help to reduce numbers of predicted neoantigens by 

excluding non-expressed peptides and create a shortlist of candidate peptides, for 

example, Sample 3 and Sample 6 have similar number of mutations, but a ratio 

between number of candidates to the number of total mutations of Sample 3 is twice 

that from Sample 6. Moreover, the result showed that the number of candidate 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

88 

neoantigens seem to be approximately proportional with the number of non-

synonymous somatic mutations. The linear relationship between number of mutations 

against number of candidate neoantigens displayed a good correlation (R2 = 0.978), 

although this correlation analysis did not include data of Sample 6 and 8 because the 

criteria of candidate neoantigen selection for those data have a step of filtering by 

gene expression level but other samples do not have RNA sequencing data (Figure 

5.2). Thus, the number of candidate neoantigens that selected from different criteria 

could not be compared.   Next, shared mutated genes across nine patients were 

explored, among those samples, the mutated genes that were found in more than one 

sample were selected. There were 12 mutated genes that were shared by two or more 

samples. Two of them were TP53 and APC which are well known cancer driver genes 

in colorectal cancer [174], and mutations of TP53 were found in 4 of 9 cases with 

different mutations sites. Only APC and ZNF808 shared the same mutated residues in 

two samples which are frameshift mutation of APC in Sample 4 and 7 and point 

mutation of ZNF808 in Sample 6 and 7 (Table 5.4). Finding common mutated 

peptides across different patients might have good potential for developing a 

“warehouse vaccine”, suitable for many patients, although we do not see much 

evidence for this potential in our data.  
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Figure 5.2 The scatter plot between number of non-synonymous mutations and 

predicted candidate neoantigens. The linear regression model was fit to those data 

points without RNA Sequencing data because the criteria of candidate neoantigens 

selection from data with and without RNA sequencing data are different.
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Table 5.1 Number of non-synonymous somatic mutation of nine colorectal cancer 

patients 

Sample 
Missense 

Mutation 
Insertion/Deletion 

Frameshift 

mutation 

Total 

mutations 

1 330 11 16 357 

2 12 1 4 17 

3 327 7 11 345 

4 210 1 16 227 

5 236 10 15 261 

6 304 12 7 323 

7 327 43 35 405 

8 38 2 0 40 

9 40 2 0 42 

Table 5.2 HLA class I alleles of nine colorectal cancer patients 

Sample HLA-A HLA-B HLA-C 

1 

HLA-A02:07 

HLA-A02:07 

HLA-B46:01 

HLA-B40:02 

HLA-C01:02 

HLA-C03:04 

2 

HLA-A33:03 

HLA-A33:03 

HLA-B46:01 

HLA-B07:02 

HLA-C01:02 

HLA-C07:02 

3 

HLA-A24:02 

HLA-A33:03 

HLA-B44:03 

HLA-B15:25 

HLA-C07:06 

HLA-C04:03 

4 

HLA-A11:01 

HLA-A29:01 

HLA-B46:01 

HLA-B35:01 

HLA-C01:02 

HLA-C04:01 

5 

HLA-A33:03 

HLA-A24:02 

HLA-B40:01 

HLA-B40:01 

HLA-C03:04 

HLA-C07:02 

6 

HLA-A33:03 

HLA-A02:01 

HLA-B58:01 

HLA-B15:13 

HLA-C03:02 

HLA-C08:01 

7 

HLA-A33:03 

HLA-A24:02 

HLA-B40:01 

HLA-B58:01 

HLA-C03:04 

HLA-C03:02 

8 

HLA-A33:03 

HLA-A24:02 

HLA-B40:01 

HLA-B58:02 

HLA-C03:02 

HLA-C07:02 

9 

HLA-A33:03 

HLA-A02:07 

HLA-B46:01 

HLA-B44:03 

HLA-C01:02 

HLA-C07:06 
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Table 5.3 The number of candidate neoantigens of nine colorectal cancer patients 

Sample Total mutations 
Candidate 

neoantigens 

A ratio of 

candidates to 

total mutation  

RNA data 

available 

1 357 53 0.15 No 

2 17 5 0.29 No 

3 345 64 0.19 No 

4 227 48 0.21 No 

5 261 41 0.16 No 

6 323 29 0.09 Yes 

7 405 85 0.21 No 

8 40 4 0.10 Yes 

9 42 8 0.19 No 

Table 5.4 Shared mutated genes among nine cancer patients 

 Sample 

Gene 
Cancer 

Driver Gene 
1 2 3 4 5 6 7 8 9 

TP53 yes R174H   C275F     L130R A161T     

TTN no R33134C           C213764R     

AFF2 no I1023M     L1034I           

IFT122 no A662E           E655del     

PCDHA8 no R498Q       K124R         

KDM4E no R100H   Q42R             

PTGFR no     V106A R133W           

OBSCN no     Y3606H A3300V           

SLITRK5 no     V678L         G59D   

ADCY10 no             K900N A1131T   

APC yes       E1554fm     E1554fm     

ZNF808 no           R474T R474T     

del = deletion, in = insertion, fm = frameshift mutation 

5.1.2 The analysis of MHC-peptide binding based on structure analysis 

The approach of MD simulation can assess the binding energy and other 

physicochemical properties between protein structures and ligands. In this study, this 

technique is applied to investigate the binding strength of MHC molecules and their 

ligands. A set of predicted candidate neoantigens presented by HLA-A*02:01 from a 

sequence analysis were selected to perform MD simulation. The binding energy was 

computed from MD analysis aiming to validate the predicted IC50 from MHC-peptide 

predictor in MuPeXI. There were ten complexes of HLA-A*02:01/peptide as shown 
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in the Table 4.1. The MD simulation of the prepared ten system models was 

performed as following the protocol described in Section 4.4. Root-mean-square 

displacement (RMSD) calculation was performed to monitor conformational stability 

during the MD simulation. The backbone RMSD of candidate peptides are similar to 

the structure of the template from PDB (~1 Å) and reach equilibrium around the last 

10 ns whereas the RMSD of negative control (non-candidate peptides) reached ~4 Å 

indicating that the stability of binding structure between MHC and non-candidate 

peptides is not as good as for those candidates (Figure 5.3). To calculate binding free 

energy of the MHC-peptide complex, snapshots from the production phase i.e. MD 

trajectories from the last 10 ns, were captured to estimate the binding free energy 

using the MM-GBSA technique. In MM-GBSA, the binding free energy is evaluated 

as a sum of a conformation energy terms in the MM part (ΔEMM), a solvation free 

energy term (∆Gsol) that is computed using electrostatic field, and the entropy terms at 

a constant temperature (-T∆S) (Eq.1.1).  

Δ𝐺𝑏𝑖𝑛𝑑−𝐺𝐵𝑆𝐴 = Δ𝐸𝑀𝑀 + Δ𝐺𝑠𝑜𝑙 + (−𝑇Δ𝑆) ___________ (1.1) 

In the MM part, a conformation energy is a summation of the electrostatic interaction 

energy (∆Eele) and the van der Waals (∆EvdW) interaction between a ligand and its 

surroundings. In the GBSA part, the solvation energy is contributed by a summation 

of polar (∆Gsol-ele) and non-polar (∆Gsol-np) energy terms. The energy components are 

shown in Table 5.5. The total binding free energy between HLA-A*02:01 and 

candidates 1, 6, and 7 are similar to the energy of a peptide obtained from a 

crystallisation of a complex of HLA-peptide (tem), indicated by red boxes, suggesting 

that the complexes of candidates 1, 6, and 7 HLA-A*02:01 molecule have a potential 
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for a favourable protein-ligand interactions. However, candidates 2, 3, 4, and 5 

displayed binding free energies similar to the negative controls and higher than the 

template suggesting that they might have a poor interaction with HLA-A*02:01 

molecule. 

 

Figure 5.3 Root mean square deviation (RMSD) of HLA-A*02:01 and peptide 

complexes of 100 ns simulation. The dashed line marks 90 ns. Tem = template from 

crystal structure (3QEQ); c = candidate peptides from MuPeXI prediction; nc = non-

candidate peptides. 
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Table 5.5 The binding free energy and energy components (kcal/mol) for the ten 

complexes of HLA-A*02:01/Peptide. 

 

Furthermore, the relative binding affinity of HLA-A*02:01 and each peptide was 

examined by per-residue energy decomposition using an implicit solvent model. The 

total binding free energy excluding the entropic contribution was plotted per-residue 

to illustrate the peptide-HLA binding pattern. The binding free energy of an 

individual amino acid within the core 9mers was compared at identical position 

among all ten peptides. The residues at position 2 and the C-terminus in a peptide are 

anchor residues that contribute binding interactions to HLA-A*02:01 binding groove. 

The result showed amino acids at the p2, p8, and p9 positions have lower binding 

energy than other position, and the candidates 1, 6, and 7 have lower binding energy 

at those positions compared to other candidates and negative controls (Figure 5.4A). 

A structural superimposition over all complexes taken from the last MD snapshot was 

performed. Examination of the side chain directions of the residues at p2 and p9 
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positions shows that the side chains of template and candidate 1, 6, and 7 were 

orientated towards the binding cleft of HLA-A*02:01. In contrast, the direction of 

non-candidates was out of the groove of HLA molecule (Figure 5.4B). The binding 

energy results agrees with the predicted binding affinity from a sequence analysis for 

only three from seven peptides suggesting that those three candidate neoantigens are 

more convincing as true neoantigens than the other four peptides. However, MD 

simulation is a technique that analyses the physical movement of atoms and molecules 

in a simulated circumstance for a fixed period of time as trajectories can go in 

different directions from the same starting point. Hence, the binding free energy might 

not fully represent the genuine interactions of macromolecules in the real biological 

scenario.  

 

Figure 5.4 Per-residue free energy decomposition values of HLA-A*02:01/peptide 

complexes. (A) The binding free energy per residue of 9mers peptides. (B) The 

superimposition of candidate peptides and negative peptides in HLA-A*02:01 binding 

pocket. Tem = template from crystal structure (3QEQ); c = candidate peptides from 

MuPeXI prediction; nc = non-candidate peptides. 
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Besides the analysis of binding strength, a structural analysis can also provide a 

visualisation of the binding structure of a protein and ligand. The last MD snapshots 

of candidates1, 6, and 7 are shown in Figure 5.5. The structure models showed that 

the side chains of mutated residues in candidates 1 and 7 are oriented towards the 

solvent interface (indicated by the red boxes) whereas the side chain of the mutated 

residue of candidate 6 is buried in the binding cleft suggesting that mutated peptides 

of candidate 1 and 7 probably have good potential to be recognised by T cell 

receptors: the orientation of side chains of mutated residues towards the surface might 

makes a peptide to be more prominently recognisable as non-self, which is promising 

for T cell recognition. While it is not straightforward to scale up MD simulation to 

high-throughput data, these results suggest that MD can play a role in suggesting 

improved peptide candidates for vaccine development. Therefore, the following 

analyses in this study focus on the methods of prediction of MHC-peptide binding 

affinity for solving neoantigen identification tasks. 

 

Figure 5.5 The orientation of side chain of the mutated amino acids for three selected 

candidates.  
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5.1.3 Analysis of the predicted scores with existing MHC class I-peptide binding 

prediction tools  

From the analysis above, the prediction of binding affinity between MHC and peptide 

sequences is the most feasible in clinical practice and suitable for dealing with high 

throughput data such as genomic or transcriptomic sequencing data. The binding 

peptides are commonly determined by predicted IC50 < 500 nM or predicted rank 

score < 2%. From the analysis in the Section 5.1.1, the predicted binding affinity and 

gene expression level are the main contributing variables for candidate neoantigen 

selection. Nevertheless, binding affinity predictions still may carry a high risk for 

getting false positives especially in HLA alleles lacking training data for prediction 

tools. As such, we analysed the false positive rate for different HLA alleles to further 

understand this phenomenon. The overlaying of predicted IC50 of candidates from 

Sample 6 and random peptides (predicted against same set of HLA alleles of Sample 

6), was created to explore the distribution of predicted MHC binding affinity of 

putative candidate neoantigens and random peptides. The result displayed some 

overlapping between the scores from candidate neoantigens and from random 

peptides indicating imperfect separation of true and random binders (Figure 5.6). In 

this section, the prediction behaviour of NetMHCpan and MHCflurry for random 

peptides against various HLA alleles was studied to explore the prediction of random 

background and estimate false positive rate from random peptides for different types 

of HLA alleles. 
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Figure 5.6 The overlaid distribution of predicted binding affinity scores (log10 IC50) 

from candidate neoantigens of Sample 6 and random peptides. Those peptides were 

predicted against HLA alleles carried by Sample 6 using NetMHCpan4.1. 

5.1.3.1 The analysis of random background  

A set of 9mers random peptides was used as input for NetMHCpan4.1 and MHCflurry 

for predicting against different 79 HLA alleles, which are supported by MHCflurry 

and NetMHCpan. Those predictors are commonly used in several neoantigen 

identification workflows, and their performance are comparable [65]. The thresholds 

of 500 nM and 2% rank score were used to characterise “binding” peptides i.e. 

expected true positive binders. For each allele, the binding peptides were counted and 

calculated to the percent binder of a random set. The results showed that different 

MHC molecules have different number of random binders cut off by a fix threshold in 

both prediction tools (Figure 5.7). Among those alleles, the percent random binder of 

NetMHCpan4.1 using predicted IC50 (<500 nM) as a threshold ranged from 0.01% to 

7.32%, while using the predicted % rank score < 2% as a threshold, the percent 

random binder ranged from 1.88% to 6.29%. For MHCflurry prediction, the percent 

random binder selected by IC50 < 500 nM ranged from 0.01% to 7.12%. With using 

the rank score < 2% with MHCflurry predicted results, the percent random binder 
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ranged from 0.97% to 15.65%. This result can imply different binding preferences for 

different MHC molecules. However, given that NetMHCpan4.1 documentation 

suggests using the predicted % rank score to select binders rather than the IC50, the 

counts of random binders among different alleles still vary considerably at this 

threshold. 

Figure 5.7 The percent random binder of specific alleles. The upper panel is the 

binders those were selected by the IC50 less than 500 nM. The lower panel is the 

binders those were selected by the % rank < 2% 

5.1.3.2 Determination of predicted binding affinity at the top 1% 

A method to find the value for both predicted IC50 and predicted % rank score, 

corresponding to an approximate top 1% of ranked scores was next applied. The 

predicted IC50 of each HLA allele were ranked from low to high. The value at 100th 

ranked position out of 10,000 for each allele was selected as the threshold, that value 

was denoted as 1% false positive rate (FPR) threshold per allele. It should be noted 

that peptides that pass 1% threshold might not genuinely false binding peptides, but 

we use the term FPR to imply the proportion of random peptides passing a given 

threshold, which could be non-binders or “random” real binders. The predicted IC50 at 

the top 1% FPR from prediction using NetMHCpan4.1 and MHCflurry displayed high 
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variation across 79 HLA alleles, and most of them are not close to 500 nM, marked as 

the red line (Figure 5.8). For NetMHCpan4.1, the predicted IC50 giving the 1% FPR 

threshold ranges from 7 nM (A*02:11) to 9,795 nM (B*08:02). With MHCflurry, the 

predicted IC50 giving the 1% FPR threshold ranges from 12 nM (A*02:03) to 11,248 

nM (B*27:02). Moreover, within a set of alleles in the same HLA supertype, which 

have the same preference of amino acids at the anchor positions, also exhibited great 

variability in the predicted IC50 giving the 1% FPR threshold, such as the superfamily 

of HLA-A*2. Those results above indicate that different HLA alleles have different 

predicted binding affinity scores even though they are likely to bind to same (or 

highly similar) peptides. As the input was the same set of random peptides, the results 

certainly showed that different alleles can bind the peptides at 1% FPR either lower or 

higher than 500 nM. If a single fixed threshold is used for any allele, results from 

some alleles will contain more false positives, while some sets will lose true positives. 

Therefore, each specific HLA allele should have their own threshold that would allow 

the same FPR. This topic is the focus of Section 5.2. 

 

Figure 5.8 The predicted IC50 corresponding to 1% FPR across 79 HLA alleles. The 

predicted binding affinity scores were obtained from the prediction between random 

peptides against to 79 HLA alleles using NetMHCpan4.1 and MHCflurry. The red 

line marked at the value of log10(500 nM). 
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5.2 The development of a model to estimate statistical properties from MHC-

peptide binding affinity prediction 

In Section 5.1, we demonstrated that through the use of random peptides, one can 

estimate a concept similar to FPR i.e. the proportion of false observations passing a 

given threshold, from MHC-peptide binding results. Such a statistic could be 

somewhat useful for selecting peptides for onward analysis, and removing allele-

specific differences in the proportion of random peptides that pass an ad hoc score 

threshold e.g. <500 nM affinity. In fact, it is arguable whether the proportion of 

random peptides passing a given threshold is an accurate FPR, since it might cover 

both genuinely false positives i.e. peptides that will not be bound by the given MHC 

molecule, as well as random true binders. Nevertheless, for most uses of peptide 

binding prediction results, more useful concepts relate to the local or global False 

Discovery Rate (FDR) than the FPR. The local FDR, the posterior error probability 

(PEP) associated with each predicted value, which describes the actual probability 

that a given peptide will not bind to a given MHC molecule (and 1-PEP gives us the 

probability that it will bind). Moreover, the global FDR is widely used as a standard 

threshold in other scientific disciplines using large data sets, for deciding how to 

apply a threshold that present a good balance between sensitivity (proportion of true 

positives from all true) and reporting false observations. To estimate local or global 

FDR perfectly, one would need to know which data points are genuinely true and 

false (real or not real binders), which in practice will never be the case (since this is 

what we wish to predict). A typical approach to calculate PEP (and the converse is the 

true probability of prediction, 1-PEP) and global FDR, is commonly performed via 

fitting two distributions to the assumed true and false distribution of scores and 
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estimating the relative density at a given data point for PEP values, whilst the FDR 

can be estimated by the relative ratio of accumulated numbers of true and false at a 

given data point (Figure 5.9).  

In this section, the data distribution of predicted scores of MHC-peptide binding 

affinity was studied, and the model for parameter estimation was investigated to 

finding the best estimated parameters generating distributions of predicted data sets, 

which are further utilised for estimating FDR and PEP values. To estimate the true 

and false results, the parameters of data distribution are needed to estimate. Section 

5.2.2 demonstrated the framework of the EM algorithm with using the method of 

moments for beta mixture parameter estimation. The estimated parameters were used 

to calculate FDR and PEP by a cumulative density function (CDF) and a probability 

density function (PDF) of beta distribution as shown in Section 5.2.3. 
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Figure 5.9 The calculation of PEP and FDR from true and false results. 

5.2.1 The study of the statistical model fitting predicted data distributions 

5.2.1.1 Data distribution of MHC-peptide binding predicted scores 

The data distribution of the predicted binding affinity scores were represented by the 

predicted data set from the MS peptides from mono-allelic cells and multi-allelic 

cells. Data sets of MS peptides from multi-allelic cells were collected from a CML 

patient who has six alleles of HLA class I including A*03:01, A*68:01, B*07:02, 

B*44:02, C*07:01, and C*07:02. To compare with data from mono-allelic cells, the 

same six HLA alleles of MS peptides from mono-allelic cells were selected for 

representation. The MS peptides from multi- and mono- allelic cells were mixed with 

the same set of random peptides. MHC-peptide binding affinity values for their 

specific HLA alleles were then predicted using NetMHCpan4.1. The histogram plots 
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were created from the predicted scores to display the data distribution of peptides 

identified by MS experiments from mono-allelic cells, multi-allelic cells, and random 

peptides (Figure 5.10). The distribution shape of the scores for MS peptide binding 

from mono-allelic cells was almost exclusively a single peak on the left side (log10 

(IC50) values < 3 or 3.5 depending on the allele). The overlay of random peptides, 

which are believed reasonably well model non-binders (or negative results), 

demonstrated a peak on the right side. Since peptides identified by MS data from 

mono-allelic cells are highly likely to be genuine binding peptides for a given specific 

HLA allele, it could imply that the peak on the left with low IC50 values is the 

distribution of binding peptides (positives), whilst the right peak (high IC50 values) is 

the distribution of the non-binding peptides (negatives). The distribution shape of 

A*03:01, A*68:01, and B*07:01 from multi-allelic cells displayed a bimodal 

distribution, there are two separated peaks that one located on the left (lower log10 

(IC50) values, higher binding affinity) and the other on the right side (higher log10 

(IC50) values, lower binding affinity). This result is expected, since only some of the 

presented peptides in multi-allelic cell lines are presented by one allele. However, the 

left peak of B*44:02, C*07:01, and C*07:02 can hardly be observed, most predicted 

scores located on the side of low binding affinity. This might be cause from biological 

artifact of different expression level of HLA alleles in a representative sample. The 

distribution shape of the right-hand peak (low binding affinity peptides) from multi-

allelic cells well matches the distribution shape of random peptides, indicating that 

random peptides also well model peptides not presented by a given HLA allele. The 

distribution of predicted scores from MS peptides from monoallelic cells mixed with 

random peptides of 85 HLA alleles were shown in Figure 5.11. 
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Figure 5.10 The distribution of predicted binding affinity data obtained from MS and 

random peptides. The distribution of predicted binding affinity of the MS peptides 

from mono-allelic cells (top) and from multi-allelic cells (bottom) and those MS data 

sets mixed with random peptides. 

5.2.1.2 The mixture of models fitting a bimodal data distribution 

From the inspection of predicted binding score distribution in Figure 5.11 the model 

fitting data distribution was performed. The distribution of MS peptides can fit to beta 

or Gaussian distributions (represented by HLA-A*0201) were shown in Figure 5.12. 

The distribution of positive results is generally symmetrical in shape, with an 

approximate bell shape, which can be well modelled by Gaussian or beta. The 

negative distribution is not symmetrical, since it has a hard stop at about 4.69 

(log10(50000)) that is the maximum value that the predictor can provide, which cannot 

be well modelled by a Gaussian distribution. The scatter plots of correlation 

coefficient values from MS data sets and random data sets of 85 HLA alleles were 

plotted across all possible combinations of the statistical models for MS and random 

data sets including mixture of Gaussian-Gaussian (GG), mixture of Gaussian-beta 

(GB), mixture of beta-Gaussian (BG), mixture of beta-beta (BB). The scatter plots 

demonstrated that the mixtures of GB and BB have R2 and slope in range of 0.9 to 1, 

for most alleles, and the intercept from the mixtures of GB and BB were closer to 0 
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than the mixtures of GG and BG (Figure 5.13A). It suggested that the true data 

distribution (left peak) can properly fit both Gaussian and beta models while the beta 

distribution is the fittest model for false data distribution (right peak). To find 

statistical models that can properly model the observed bimodal distributions, the 

values of R2 from beta and Gaussian model fitting of each HLA allele were compared 

by a pair t-test. The average R2 from data sets of 85 HLA alleles from the beta model 

fitting true data distribution (0.95) was significantly higher than the Gaussian model 

(0.93) (p-value = 1.77E-0.7) (Figure 5.13B). Therefore, these results can indicate that 

the beta mixture is the most suitable model to fit the predicted scores of data 

containing a mixture of binding and non-binding peptides, as would be expected to be 

observed in practice. 
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Figure 5.11 Data distribution of the predicted scores (binding affinity in log10 (IC50)) 

of MS and random peptides of 85 HLA alleles. 
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Figure 5.12 The overlaid of distribution between real data and generated data from 

different statistical distributions. The data sets were generated from the model of 

mixture of Gaussian-Gaussian (GG), mixture of Gaussian-beta (GB), mixture of beta-

Gaussian (BG), mixture of beta-beta (BB).   
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Figure 5.13 The mixture models fitting data distributions of 85 HLA alleles. (A) The 

scatter plots of correlation coefficient R2, slope and intercept values from MS data 

sets (x axis) and random (y axis) data sets of 85 HLA alleles that were fitted by beta 

or Gaussian models; mixture of Gaussian-Gaussian (GG), mixture of Gaussian-beta 

(GB), mixture of beta-Gaussian (BG), mixture of beta-beta (BB). (B) The average of 

R2 of Gaussian and beta model fitting MS and random data sets from 85 HLA alleles. 

Each bar represented the mean of R2 from 85 HLA alleles. (**p-value < 0.01); 

Gaussian fitting MS data (G_MS), beta fitting MS data (B_MS), Gaussian fitting 

random data (G_random), beta fitting random data (B_random). 

5.2.2 The development of parameter estimating model using the EM algorithm 

5.2.2.1 Parameter estimation using the EM for beta mixture model 

The true and false distributions were estimated by the beta parameters estimation 

model with the framework of the EM algorithm as described in Section 4.11. To 

observe the feasibility of the EM model, the predicted binding affinity scores of the 

mixture of 1000 MS and 4000 random peptides from 85 HLA alleles were then 

estimated. The overall distribution of the observed data in Figure 5.11 is captured well 
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by a two-component beta mixture model, with the first component representing low 

IC50 values (true data) and the second component for high IC50 values (false data). To 

estimate the sizes of true and false data from the predicted results, the parameters of 

beta mixture distribution including two mixture proportions (𝜋𝑡𝑟𝑢𝑒, 𝜋𝑓𝑎𝑙𝑠𝑒), 

𝛼𝑡𝑟𝑢𝑒 , 𝛼𝑓𝑎𝑙𝑠𝑒, and 𝛽𝑡𝑟𝑢𝑒, 𝛽𝑓𝑎𝑙𝑠𝑒 were estimated from the predicted data sets for 85 

HLA alleles using the EM algorithm with a method of moments estimation for the 

beta mixtures. As the data sets are scores of MHC-peptide binding affinity prediction, 

the real parameter shapes of 𝛼 and 𝛽 of the data were not exactly known, but the ratio 

of MS and random size was defined as 0.2 and 0.8, respectively. Therefore, the 

relative change between real and estimated values were computed to evaluate the 

correctness of estimated parameters. The bar graph of relative change values 

demonstrated very low relative changes for almost data sets, though, some HLA 

alleles data showed a high difference (a relative change ≥ 0.5) between real and 

estimated values, which are found in a few alleles in B locus e.g. B*13:01, B*14:02 

and most in HLA-C e.g. C*04:01, C*07:02, C*12:02 (Figure 5.14). Taken together, 

the analysis from invented data sets and predicted scores from 85 HLA alleles 

indicated that feasibility of the current version of the EM for beta mixture model 

might not generally robust for any beta mixture distributions.  

5.2.2.2 The EM model with constraining of false parameters  

To improve the performance of the EM model to give more sensible estimation, it is 

considered that the estimate numbers of parameter shapes should be reasonable for 

data distribution of a specific allele. Since the second component of the data 

distribution is a set of scores of non-binding peptides, the distribution shape of any 
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predicted scores of non-binding peptides with the same HLA allele should be similar. 

Therefore, the estimated beta parameters for the second component were then 

constrained by the range of values calculated from the data sets of various sizes 

(1000, 5000, and 10000) of predicted binding affinity scores from random peptides 

with a length of 8, 9, 10, and 11 mers against 85 HLA alleles. The purpose of this 

restriction is to ensure that one component of the beta mixture model is certainly 

captured as the false data. It should be noted that since some random peptides may be 

true binders, random peptides with IC50 < 1000 nM (~2.5% of all generated random 

peptides on average) were exclude from consideration (Figure 5.15). The values of 

𝛼𝑓𝑎𝑙𝑠𝑒 and 𝛽𝑓𝑎𝑙𝑠𝑒 from different data sets of each HLA allele were explored to test for 

a variation of beta model parameter ranges dependent on data set sizes and peptide 

lengths. The calculated values of 𝛼 and 𝛽 from random data sets have a small 

variation across different data sizes for most HLA alleles (Figure 5.16), from which it 

can be inferred that the calculated values of 𝛼 and 𝛽 can be utilisied to apply to any 

false data sets for the same specific HLA allele. The ranges of calculated values of 

𝛼𝑓𝑎𝑙𝑠𝑒 and 𝛽𝑓𝑎𝑙𝑠𝑒 were used to constrain the estimated 𝛼𝑓𝑎𝑙𝑠𝑒 and 𝛽𝑓𝑎𝑙𝑠𝑒 in the MM-

step The data sets of predicted scores from 1000 MS and 4000 random peptides with 

9mers for 85 HLA alleles (same data sets in Section 5.2.2.1) were used to test the 

feasibility of the modified EM model. The relative change of real and estimated 

values from the non-constrained model was compared to the constrained model. The 

relative changes of several HLA alleles, especially data sets in HLA-C were 

dramatically reduced with using the constrained model (Figure 5.17) indicating that 

restriction of estimated values for false data in the sensible ranges can improve the 

performance of the EM model. The R2 between the real and simulated data set for all 
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85 alleles are greater than 0.99 (Figure 5.18A). However, the R2 can only describe a 

similarity of distribution shape but not scaling between two data sets. To ensure that 

simulated data can represent a given observed data, we also considered other values in 

the linear equation including the slope and intercept, and they are also close to 1 and 

0, respectively (Figure 5.18B and 5.18C). Furthermore, the difference between two 

distributions of real and simulated data for 85 HLA alleles was tested by the KS 

analysis. The p-values from KS test are higher than 0.05 for almost all alleles 

indicating that distributions of real and simulated data are not significantly different, 

although there are few alleles that have p-value less than 0.05, which are A*01:01, 

C*04:01, and C*07:01 (Figure 5.18D). The overlaying of data distributions of each 

HLA allele between the predicted scores and simulated data set were shown in the 

Figure 5.19. In most HLA alleles, the distribution of real and simulated data for both 

the left and right peak showed a good alignment (81 of 85 alleles, R2 ≥ 0.995). 

However, there are four data sets, that have right skew distribution of MS data 

including B*14:02, C*04:01, C*06:02, and C*07:02, displayed less good alignment 

between real MS data and their simulated data (those alleles have R2 < 0.995). 

Nevertheless, the distribution of false data was well captured by the simulated data 

indicating that the ratio of false positive to true positive in that area of the MS data 

should be still correct.  
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Figure 5.14 The relative change between designated and estimated proportion 

mixture of MS (𝜋𝑡𝑟𝑢𝑒) and random (𝜋𝑓𝑎𝑙𝑠𝑒) for data sets of 85 HLA alleles. 
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Figure 5.15 The percentage of removed data points (predicted IC50 < 1000 nM) from 

random peptides for 85 HLA alleles. 

 

Figure 5.16The box plots of calculated parameter shapes (α and β) of beta 

distribution. The two parameters were calculated from data sets with various sizes 

(1000, 5000, and 10,000 peptides) and lengths (8 to 11 mers) of predicted binding 

scores of random peptides against 85 HLA alleles.  
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Figure 5.17 The performance of beta parameter estimation models with non-

constrained and constrained estimated false parameters. (A) The relative change 

between designated and estimated proportion mixture of MS (𝜋𝑡𝑟𝑢𝑒) and random 

(𝜋𝑓𝑎𝑙𝑠𝑒) for data sets of 85 HLA alleles. (B) The average relative change of 𝜋𝑡𝑟𝑢𝑒 and 

𝜋𝑓𝑎𝑙𝑠𝑒 from HLA-A, B and C (**p-value < 0.01, *** < 0.001).
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Figure 5.19 The overlaying of data distribution between the real (predicted IC50 

scores) and simulated data sets. 
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5.2.2.3 Beta parameter estimation for massive imbalance data  

To test the robustness of the estimator model with a large imbalance in true and false 

data, the final implementation of the estimator model was not only constrained with 

estimated parameters of the beta 2 component, but also restricted estimated 

parameters of the beta 1 component. However, the estimated beta parameters of true 

data are only restricted if the estimated 𝜋1= 1 and size of the negative set ≠ 0 

(predicted IC50 > 10000 nM) i.e. indicating that there is only one distribution found, 

and there are data points in the plausible range for false data. In this case, the ranges 

of 𝛼 and 𝛽 for the first beta component were initially calculated from data points with 

predicted IC50 ≤ 10000 nM using Eq. 3.23 and 3.24, and the range of values are only 

allowed to deviate 25% from the initial estimates. In this analysis, the parameter 

estimation analysis was also performed with data sets with a larger imbalance ratio 

containing 1000 MS peptides and 8000 random peptides, and the result showed that 

the similarity between real and simulated data sets for 85 HLA alleles are close to 1 

(R2 > 0.995), and they are similar to those from 4000 random peptide (Figure 5.20). 

Furthermore, highly imbalanced distributions (i.e. almost all true, or almost all false), 

where selected MS data sets and random data sets were used to test with the model 

separately (Figure 5.21) and the predicted IC50 of peptides derived from MHC I multi-

allelic cells (Figure 5.22). The result of similarity measure from those data sets 

revealed a high similarity between the real and simulated data indicating that the 

model can work well with data sets that are not in our sets of data used to learn and 

train the model and provide sensible estimated parameters for data distributions with a 

large imbalance between true and false data. 
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5.2.2.4 Beta parameter estimation for multi-lengths peptides 

Since the common lengths of peptides for MHC class I are 8 to 11 mers, hence, the 

mixture of MS and random data sets with different peptide lengths were generated for 

more thoroughly testing the performance of the constrained EM model. There are 16 

HLA alleles, with MS peptides available for all lengths (8, 9, 10, and 11 mers), which 

were used to test the estimation performance of the model, 800 MS peptides (200 per 

length) and 3,200 random peptides (800 per length). It was found that the R2 values of 

the real and simulated data sets for 16 HLA alleles are highly close to 1 (Figure 

5.23A). The value of R2 suggested that the parameter estimation model functions well 

for the data sets with multi-lengths of peptides, which are shown by a good alignment 

between the real and simulated data sets created by the estimated parameters (Figure 

5.23B). Altogether, the results of the R2 values and the overlaying of data 

distributions indicated that the framework of EM algorithm with a modified MM step 

for constraining estimated parameters can provide the sensible estimated parameters 

that can be further used for generating a data set for resembling the real predicted data 

set. The estimated true and false data of the predicted results can be further used to 

calculate the values of FDR and PEP for an individual predicted score. 

 

Figure 5.20 The R2 between real and simulated data sets from data with 4000 and 

8000 random peptides.  
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Figure 5.21 The estimation results from the beta mixture model on data set with a 

very large imbalance ratios between two components. (A) The data distribution of 

predicted binding affinity (log10(IC50)) of a specific HLA allele. (B) The beta models 

can fit to two components of data distribution to estimate parameters for true and false 

data. (C) The similarity measure from the linear regression model fitting correlation 

of the real and simulated data set, m = slope, c = y-intercept. (D) FDRs and PEPs 

calculated from estimated true and false data of each predicted IC50.  
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Figure 5.22 The estimation results from the beta mixture model on predicted IC50 of 

peptides from multi-allelic cells. (A) The data distribution of predicted binding 

affinity (log10(IC50)) of each HLA allele expressed by multi-allelic cells. (B) The beta 

models can fit to two components of the data distribution to estimate parameters for 

true and false data. (C) The similarity measure from the linear regression model fitting 

correlation of the real and simulated data set, m = slope, c = y-intercept. (D) FDRs 

and PEPs calculated from estimated true and false data of each predicted IC50. 
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Figure 5.23 The performance of parameter estimation model for beta mixture testing 

with data sets with multi-lengths peptides (8-11 mers). (A) The R2 between the real 

and the simulated data sets. (B) The overlaying of data distributions between the real 

and simulated data sets.  

5.2.3. The estimation of FDR and PEP from simulated data sets generated by 

estimate parameters for the predicted scores  

The values of FDR and PEP of an individual predicted score were calculated from the 

estimated parameters by beta distribution functions. The FDR was estimated using a 

CDF (Eq. 3.32), while the PEP was computed based on a PDF (Eq. 3.33) given by 

estimated beta parameters derived from the EM model, which are 𝛼𝑡𝑟𝑢𝑒 , 𝛽𝑡𝑟𝑢𝑒, 𝛼𝑓𝑙𝑎𝑠𝑒 , 

and 𝛽𝑓𝑎𝑙𝑠𝑒. From NetMHCpan’s documentation, the 2% rank is recommended to use 

as a threshold for binding peptide selection. The % rank scores were estimated from 

number of random peptides that have IC50 scores located in the range of predicted 

scores of a set of naturally presented MHC ligands. Hence, the role of % rank score is 
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assumed to estimate the FPR of true predicted data. Here, this analysis performed the 

estimation of statistical confidence measure of FDR and PEP for peptide binding 

prediction from the test data sets of a mixture of MS and random peptides. The results 

in Figure 5.24 showed that the accumulated FDR value at the 2% rank score of most 

alleles are less than 0.1, but about 25% of the representative data sets (21 of 85 

alleles) have the FDR at the 2% rank score reach up to 0.26 e.g. B*15:10, C*01:02, 

and C*07:04, i.e. 26% of peptides passing the threshold are predicted to be false 

positives (Figure 5.24A). At the 2% rank threshold, the FDR of HLA-C (0.13) is the 

highest on average followed by HLA-B (0.07), and the average of HLA-A (0.03) is 

the lowest (Figure 5.25).  

To assess the confidence of each peptide’s predicted score, the PEP was computed for 

each peptide in the data set. The analysis demonstrated that 48 of 85 data sets have the 

PEP at the 2% rank over 0.5, i.e. peptides close the threshold have only a 50% chance 

of being a true positive (Figure 5.24B). Moreover, the PEP at the 2% rank of HLA-B 

and HLA-C on average are greater than 0.5 (0.64 and 0.63, respectively) whilst the 

average PEP of HLA-A is 0.38 (Figure 5.25).The overlaying of PEP values on the 

data distribution of predicted IC50 scores from 85 HLA alleles in Figure 5.24C 

showed that the log10 (IC50) < 2 or > 4 have a high certainty for being true or false 

binding peptides, their PEP values close to 0 and 1. For the scores in the range of 2 to 

4 have less certainty to determine whether they should be true or false binding 

peptides, especially for less well separated data sets of some alleles. Several data sets 

have PEP values close to 1 for peptides with the % rank ~ 2% e.g. A*02:07, A*29:02, 

B*15:10, B*27:02, C*08:01, and C*14:03, in contrast, some data have very low PEP 

values, even if those scores have the % rank ≥ 2%, scores are determined as non-
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binding peptides, e.g. A*02:11, B*15:17, B*27:05. These results suggest that PEP 

values provide considerable added value over the use of the % rank for estimation of 

confidence in an individual data point. Beyond the MS:random data sets generated for 

85 alleles data, the FDRs and PEPs from data containing almost all true or all false 

data (Figure 5.21D) and multi-allelic data (Figure 5.22D) were calculated from 

estimated beta parameters using Eq. 3.32 and 3.33. The results demonstrated that the 

values of FDR and PEP correspond well with expected true and false data, giving 

confidence that the model will perform well when presented with genuine data sets. 
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Figure 5.24 Estimation of FDR and PEP for predicted scores of 85 HLA alleles. The 

values of accumulated global FDR (A) and PEP (B) at the 2% rank. (C) The 

A B C 
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overlaying of PEP values on the data distribution of predicted scores of 85 HLA 

alleles, the dashed black line was marked at the score with 2% rank. 

 

Figure 5.25 FDR and PEP at the 2% rank score of HLA-A, HLA-B, and HLA-C. The 

red line in the box represents median of FDR or PEP. 

5.2.4 Extensibility for MHCflurry prediction 

The previous analysis has been primarily tested with NetMHCpan, though, past 

benchmarking results suggest that MHCflurry gives similarly strong performance for 

peptide binding prediction, the approach in this study was thus extended for predicted 

results coming from MHCflurry2.0. MHCflurry also reports predicted IC50 and % 

rank, however, the MHCflurry’s documentation does not suggest the cut off threshold 

of the % rank. Therefore, the 2% rank was assumed as a possible threshold for 

distinguishing binders and non-binders, as for NetMHCpan. There are 79 HLA alleles 

supported by MHCflurry, and there are 55 alleles of 9mers MS-random peptides in 
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this study, which are available for those supported alleles. To estimate parameters 

from data distributions from MHCflurry prediction results, the parameter ranges that 

are calculated from MHCflurry predicted scores of random peptides in various data 

sizes (1000, 5000, and 10000) were applied to constrain the EM model instead of 

parameters ranges calculated from NetMHCpan predicted scores. The R2 between the 

real (predicted IC50 scores) and simulated data set ranged from 0.995 to 0.999 for 

most alleles (Figure 5.26A), and the overlay between the real and simulated data is 

shown in Figure 5.27. Thus, those results indicate that the approach of EM algorithm 

with method of moments also works well for predicted data coming from MHCflurry. 

The analysis of FDR and PEP estimation showed that if using a 2% rank threshold, 

over 10% global FDR occurs for 18 alleles, and PEP is higher than 50% for 27 of 55 

alleles – indicating that as for MHCflurry, 2% rank is not an ideal threshold for 

controlling FDR for many alleles (Figure 5.26B and 5.26C).  
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Figure 5.26 The analysis of the model with predicted results from MHCflurry. (A) 

The R2 between the real and simulated data sets. The values of estimated FDR (B) and 

PEP (C) for predicted scores of 55 HLA alleles at the 2% rank score. 
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Figure 5.27 The overlaying of data distributions between the predicted scores from 

MHCflurry and their simulated data sets.   
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5.3 The development of an immunogenicity prediction model for distinguishing 

immunogenic and non-immunogenic peptides using Random Forest 

The model from the previous result can estimate global and local FDR for predicted 

MHC-peptide binging affinity scores. Using FDRs (either local or global, depending 

on the context) as one of criteria to select binding peptides would help to avoid 

selecting false binding peptides, and thus reduce the risk for getting non-functional 

neoantigen because non-binding peptides cannot be epitopes. However, as the context 

described in Section 3.6, all epitopes must be MHC binding peptides, but some MHC 

presented peptides can be non-immunogenic peptides i.e. those that do not generate an 

immune response. Therefore, to increase the chances to obtain genuine neoantigens, 

prediction of immunogenicity is also required. The process of antigen processing and 

MHC presentation allows T cells to detect antigens presented by MHC molecules. 

The interaction of TCR and antigen involves a strong binding between TCR, MHC 

molecule and presented peptide. Due to sophisticated steps for T cell recognition and 

extremely high variety of T cell receptors, resulting in enormous variety of preference 

patterns of TCR-peptide binding (Section 3.1.1), the characterisation of the specificity 

for TCR-peptide interaction using prediction algorithms is very challenging. The 

recent immunogenicity prediction approaches consider the peptide sequence as the 

starting point, because TCR-epitope interaction is governed by physicochemical 

principles like other protein-protein interactions, and the concept of “foreignness” 

since a host’s T cells will be stimulated by non-self-antigens. In this section, a 

machine learning model for immunogenicity prediction was developed. The model 

was built using the Random Forest (RF) algorithm and aimed to classify peptides to 

two categories, those that are immunogenic and non-immunogenic peptides. The 
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training data were collected from a data set of MHC class I presented peptides 

including immunogenic and non-immunogenic peptides derived from previously 

published immunogenicity experiments. A set of features related to physicochemical 

properties and divergence from the nearest human homolog, were exploited to create 

the classifier model, reported in Section 5.3.1. In Section 5.3.2, the benchmarking 

analysis was performed, and predicted probability scores obtained from the classifier 

model were studied and calibrated to real probability scores relying on the probability 

density of the data distribution, described in Section 5.3.3. For the final part, the 

Random Forest model was further investigated to understand how the model makes 

decisions, summarised in Section 5.3.4. 

5.3.1 Immunogenicity classification prediction model 

The initial set of features was created from physicochemical properties in Table 4.4 as 

well as the similarity features. Numerical values of a property from the AAindex 

database were applied to each amino acid in a 9mers peptide. Thus, a 9mers peptide 

can generate 182 features including 180 features from 18 physicochemical properties 

and two features from similarity properties. The first model was built from all 182 

features using RandomForestClassifier model with 70% training and 30% testing. 

The model performance was evaluated by AUC score from ROC curve with 10-fold 

cross-validation. With 182 features, the average AUC is 0.726 which means there is 

~73% chance that the model will be able to distinguish between immunogenic and 

non-immunogenic peptides. Even though the AUC score is not near to 1, it showed 

that the model can classify two classes of peptide with fairly high discrimination 

capacity. Moreover, the average F1 scores for positive and negative classification 

from 10 runs are 0.709 and 0.601, respectively suggesting that the model has a 
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slightly better accuracy for classifying immunogenic class than non-immunogenic 

class. The high importance values were mostly found in summation of all residues 

features and similarity features (Figure 5.28). However, importance values from the 

model with 182 features were very low per feature, indicating that most features are 

only making a small contribution to the model performance. This makes for a model 

that is hard to interpret and difficult to know if it will work well beyond the source 

data used for training.  

To reduce the number of input variables that might not contribute to the model 

decision and sculpt more interpretable decision trees, feature selection was therefore 

performed to retain a small number of key features that contribute more highly to 

model performance. The feature selection was performed as described in Section 4.19. 

The algorithm was terminated when AUC scores were substantially declining. It was 

found that decreasing feature numbers does not significantly improve AUC scores 

(Figure 5.29). From inspection, the AUC score started falling from the model with 70 

features (AUC = 0.723), and the AUC score of the final model (17 features) is 0.715 

(Figure 5.30A). The objective for this analysis is to determine a set of features that 

should not decrease the performance model’s predictability, therefore, a set of 

features that is as small as possible and does not substantially drop the AUC score 

was selected. From the result in Figure 5.30B, the models trained with 42 and 17 

features were assessed, as follows. The AUC scores from 10-fold cross validation of 

42 features model is not significantly different from the original model (182 features), 

but the AUC score from 17 features model is substantially decreased from the original 

model (Figure 5.31). Therefore, a set of 42 features was determined as the optimal set 

of features for training the Random Forest model, the list of 17 and 42 features were 
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shown in Table 5.6 and 5.7, respectively. Although, a set of features from feature 

selection analysis cannot considerably improve the performance of the Random Forest 

model for immunogenicity classification, a small set of feature number does make the 

model more understandable and can reduce inconsistency from irrelevant features 

contributing to a tree decision. 

 

Figure 5.28 The reported performance of the Random Forest model with 182 

features. The average of AUC scores, F1 scores for positive and negative classes were 

obtained from 10 runs. 
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Figure 5.29 The importance values for 182 features. The values of each feature was 

computed from the Random Forest algorithm. 

 

Figure 5.30 Feature selection analysis. (A) The AUC scores from models with 

different number of features during feature selection analysis. (B) The AUC scores of 

models with number of features less than 70. 
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Figure 5.31 The AUC scores from 10-fold cross validation from models with 182, 42, 

and 17 features. Each bar represents mean±sd. The p-values were obtained from 

Student's t-test analysis, NS (non-significant), **(p-value, 0.01). 

Table 5.6 The set of 17 features yielded from the feature selection analysis   

Features Description 

p2_ZIMJ680104 Isoelectric point of position 2 

sum_ZIMJ680104 Isoelectric point of a peptide 

sum_GRAR740102 Polarity (Grantham, 1974) of a peptide 

p3_FAUJ880103 Normalized van der Waals volume of positon 3 

p9_FAUJ880103 Normalized van der Waals volume of positon 9 

sum_FAUJ880103 Normalized van der Waals volume of a peptide 

sum_HUTJ700103 Entropy of a peptide 

sum_OOBM770102 Short and medium non-bonded energy per atom of a peptide 

sum_BLAS910101 side chain hydrophobicity of a peptide 

blast_score Similarity of peptides and host’s proteome  

sum_EISD860102 Atom-based hydrophobic moment of a peptide 

sum_OOBM770103 Long range non-bonded energy per atom of a peptide 

sum_GOLD730101 Hydrophobicity factor of a peptide 

sum_EISD860103 Direction of hydrophobic moment of a peptide 

sum_FASG760101 Molecular weight of a peptide 

sum_ZIMJ680103 Polarity (Zimmerman et al., 1968) of a peptide 

sum_KRIW790102 Fraction of site occupied by water of a peptide 
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Table 5.7 The set of 42 features yielded from the feature selection analysis  

Features Description 

p2_ZIMJ680104 Isoelectric point of position 2 

p9_ZIMJ680104 Isoelectric point of position 9 

sum_ZIMJ680104 Isoelectric point of a peptide 

p2_GRAR740102 Polarity (Grantham, 1974) of position 2 

sum_GRAR740102 Polarity (Grantham, 1974) of a peptide 

p3_FAUJ880103 Normalized van der Waals volume of positon 3 

p9_FAUJ880103 Normalized van der Waals volume of positon 9 

sum_FAUJ880103 Normalized van der Waals volume of a peptide 

p6_FAUJ880103 Normalized van der Waals volume of positon 6 

sum_HUTJ700103 Entropy of a peptide 

p1_HUTJ700103 Entropy of position 1 

p8_HUTJ700103 Entropy of position8 

p2_OOBM770102 Short and medium non-bonded energy per atom of position 2 

p7_OOBM770102 Short and medium non-bonded energy per atom of position 7 

p6_OOBM770102 Short and medium non-bonded energy per atom of position 6 

sum_OOBM770102 Short and medium non-bonded energy per atom of a peptide 

p3_BLAS910101 side chain hydrophobicity of position 3 

p7_BLAS910101 side chain hydrophobicity of position 7 

sum_BLAS910101 side chain hydrophobicity of a peptide 

blast_score Similarity of peptides and host’s proteome  

sum_EISD860102 Atom-based hydrophobic moment of a peptide 

p6_EISD860102 Atom-based hydrophobic moment of position 6 

sum_OOBM770103 Long range non-bonded energy per atom of a peptide 

p8_OOBM770103 Long range non-bonded energy per atom of position 8 

p3_OOBM770103 Long range non-bonded energy per atom of position 3 

p1_PRAM900101 Hydrophobicity of position 1 

p5_PRAM900101 Hydrophobicity of position 5 

p9_PRAM900101 Hydrophobicity of position 9 

p7_PRAM900101 Hydrophobicity of position 7 

sum_PRAM900101 Hydrophobicity of a peptide 

p5_KRIW710101 Side chain interaction parameter of position 5 

p4_KRIW710101 Side chain interaction parameter of position 4 

sum_KRIW710101 Side chain interaction parameter of a peptide 

sum_GOLD730101 Hydrophobicity factor of a peptide 

sum_EISD860103 Direction of hydrophobic moment of a peptide 

p9_FASG760101 Molecular weight of position 9 

sum_FASG760101 Molecular weight of a peptide 

sum_ZIMJ680103 Polarity (Zimmerman et al., 1968) of a peptide 

p2_KRIW790102 Fraction of site occupied by water of position 2  

sum_KRIW790102 Fraction of site occupied by water of a peptide 

sum_EISD840101 Consensus normalized hydrophobicity scale of a peptide 

sum_DAWD720101 Size of a peptide 
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5.3.2 Benchmarking analysis  

Form the previous analysis, the optimised model was created by a set of 42 features in 

Table 5.7. To evaluate the model performance compared to the existing tools, the 

model was compared to existing MHC class I immunogenicity prediction tools which 

are Immunogenicity [130] and INeo-Epp [142], these models were built by sequence-

based learning and trained with physicochemical properties. The data set for 

benchmarking was split from the whole data set for 10%, hence, the 10% validating 

data was used to test with the Random Forest model and those two published models 

and had not been used to train our model or select features. The AUC scores from the 

model in this study and those two models were calculated from the prediction of the 

same data set (10% validating data). It revealed that the performance of the Random 

Forest model in this work (AUC=0.729) outperforms Immunogenicity (AUC=0.516) 

and INeo-Epp (AUC=0.699) with respect to F1 scores of the Random Forest model, 

Immunogenicity, and INeo-Epp (0.649, 0.510, and 0.578, respectively) (Figure 5.32A 

and B).  

 

Figure 5.32 The benchmarking analysis of the Random Forest (RF) model and the 

existing tools. (A) The ROC plots representing AUC scores for all tools. (B) The bar 

plot of F1 scores obtaining from all tools.    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

138 

5.3.3 Predicted probability calibration 

The probability scores from the Random Forest model were calculated from the 

average probabilities over the number of trees in the forest, although it may not be a 

real probability for other unseen data that might not be different in data size or a ratio 

between positives and negatives data. Therefore, the predicted probability scores 

produced from the Random Forest model should be calibrated to real probabilities that 

can be further applied for any data prediction. The distribution of pseudo-probability 

scores corresponding to immunogenic class was observed for known true and false 

data set (Figure 5.33A). Then, the distributions were fitted to two beta components, 

and true posterior probability of each predicted probability (a reverse posterior error 

probability (1-PEP)) was calculated from the PDF of beta distribution. The plot of 

pseudo-probability against to true posterior probability displayed a non-linear 

relationship between pseudo-probability and true posterior probability, especially 

scores in range of 0.8 to 1, but it seems to be a sigmoid curve-like (Figure 5.33B). 

Therefore, the logistic regression function in Eq. 4.1 was selected to model the data 

and fit to that sigmoid curve to estimate those constant values that could form the best 

equation for transforming pseudo-probability to calibrated probability. The estimated 

constant values from different training data sizes showed small variation (Table 5.8). 

Kullback–Leibler (KL) divergence was used to evaluate similarity between each set 

of fit data and three observed true posterior probability data with 20%, 30%, and 40% 

testing data. A set of constant values from 30% testing data has the lowest average KL 

value for all three data sets (Table 5.8) indicating that transforming data by the 

logistic regression with these constant yields the best fitted data (Figure 5.34). Hence, 

the formula in Eq. 4.2 was further used to transform pseudo-probability values from 
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the Random Forest model to calibrated probability scores for the immunogenicity 

prediction. 

𝑦𝑖 = 0.048 +
1

1+𝑒−5.87𝑥𝑖+2.89  ____________ (4.2) 

 

Figure 5.33 The pseudo-probability scores and true posterior error probability (1-

PEP). (A) The distribution of pseudo-probability of immunogenic and non-

immunogenic data sets. (B) The plot between each pseudo-probability score against 

its true posterior probability (1-PEP), which is estimated from the density of the data 

distribution. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

140 

 

Figure 5.34 The plot of pseudo-probability scores against to 1-PEP (y) and calibrated 

probability scores (y_fit). The calibrated probability scores of different testing data 

sizes are transformed by the logistic regression function.  

Table 5.8 The estimated constant values from the logistic regression fit and 

Kullback–Leibler (KL) divergence values 

  

Observed data 

(% testing size) 

Constants KL divergence value 

a b n y fit_20% y fit_30% y fit_40% Average 

20% 6.713 3.351 0.033 1.528 2.004 1.790 1.774 

30% 5.870 2.892 0.048 1.168 1.538 1.373 1.360 

40% 6.415 3.333 0.044 1.307 1.721 1.531 1.520 

5.3.4 The model interpretation 

The treeinterpreter function provides a contribution value of each feature for the 

prediction of each class. The average prediction value is yielded from the average of 

all possible predictions in data from the path going through an individual node in a 

tree. Each node in the decision tree represents some feature and makes a decision 

based on the feature value in the sample. For the Random Forest where there are 
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multiple trees, the final prediction is computed from an average of all trees. The 

contribution value of each feature in Table 5.7 was assessed using the treeinterpreter 

function to reveal the features that influence the immunogenicity classification model. 

The result from the treeinterpreter returns contributed values of every feature for 

every data point in a training data set. For each data point, the feature thar has the 

highest contributed value was determined. The percent frequency of each feature was 

computed by counting from a set of highest contributed features across all data points. 

A larger number means the feature has been frequently found in a set of highest 

contributed features indicating that the feature has more influence on the model 

decision. The percent frequency for all features is shown in Table 5.9. Among those 

features, the properties related to polarity highly contribute to the model, which are 

isoelectric point (22.4%) and polarity (11.1%). The second highest influence was 

found in properties involved in hydrophobicity, the summation of those feature has a 

frequency of 30.9%. Moreover, features that relate to a strength of binding interaction 

associated with non-covalent intermolecular interaction have a contributed frequency 

of 15.3%, which are Short and medium non-bonded energy per atom and Long range 

non-bonded energy per atom. Furthermore, entropy has a moderate impact (9.3%) on 

the model, this property is also involved in a strength of binding affinity. Molecular 

weight (2.2%) of amino acid and the similarity feature (blast score, 2.3%) contribute 

less to the model compared to other features (Figure 5.35). Overall, the result from the 

model interpretation revealed properties related to the strength of binding interaction 

mostly contribute to the decision of the model to classify immunogenic and non-

immunogenic peptides suggesting that those properties might be favourable for 

interaction between T cell receptors and peptides. 
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Figure 5.35 The contribution of important features to the prediction model. The bar 

plot displays the percent frequency computed by counting from a set of highest 

contributed features across all data points. 
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Table 5.9 The percent frequency counting from number of found highest contributed 

values of 42 features  

Features Description 
% 

Frequency 

sum_HUTJ700103 

Entropy of formation (Hutchens, 1970) 

4.06 

p1_HUTJ700103 3.19 

p8_HUTJ700103 2.06 

p2_KRIW790102 
Fraction of site occupied by water (Krigbaum-Komoriya, 1979) 

1.06 

sum_KRIW790102 0.66 

p1_PRAM900101 

Hydrophobicity (Prabhakaran, 1990) 

1.86 

p5_PRAM900101 1.6 

p9_PRAM900101 1.46 

p7_PRAM900101 1.26 

sum_PRAM900101 0.33 

p3_FAUJ880103 

Normalized van der Waals volume (Fauchere et al., 1988) 

7.65 

p9_FAUJ880103 3.19 

sum_FAUJ880103 0.6 

p6_FAUJ880103 0.73 

sum_EISD860103 Direction of hydrophobic moment (Eisenberg-McLachlan, 1986) 1.6 

sum_EISD840101 Consensus normalized hydrophobicity scale (Eisenberg, 1984) 0.73 

p3_BLAS910101 

Scaled side chain hydrophobicity values (Black-Mould, 1991) 

3.32 

p7_BLAS910101 0.66 

sum_BLAS910101 0.6 

sum_GOLD730101 Hydrophobicity factor (Goldsack-Chalifoux, 1973) 1.66 

sum_EISD860102 
Atom-based hydrophobic moment (Eisenberg-McLachlan, 1986) 

2.13 

p6_EISD860102 1.53 

p2_ZIMJ680104 

Isoelectric point (Zimmerman et al., 1968) 

10.64 

p9_ZIMJ680104 7.38 

sum_ZIMJ680104 4.39 

p2_GRAR740102 
Polarity (Grantham, 1974) 

9.11 

sum_GRAR740102 0.8 

sum_ZIMJ680103 Polarity (Zimmerman et al., 1968) 1.2 

p2_OOBM770102 

Short and medium range non-bonded energy per atom (Oobatake-

Ooi, 1977) 

3.59 

p7_OOBM770102 2.99 

p6_OOBM770102 2.73 

sum_OOBM770102 1.93 

sum_OOBM770103 

Long range non-bonded energy per atom (Oobatake-Ooi, 1977) 

1.93 

p8_OOBM770103 1.26 

p3_OOBM770103 0.86 

p5_KRIW710101 

Side chain interaction parameter (Krigbaum-Rubin, 1971) 

1.86 

p4_KRIW710101 1.4 

sum_KRIW710101 0.86 

p9_FASG760101 
Molecular weight (Fasman, 1976) 

1.53 

sum_FASG760101 0.66 

sum_DAWD720101 Size (Dawson, 1972) 0.66 

blast_score Similarity of peptides and host’s proteome  2.26 
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5.4 A pipeline for ranking predicted neoantigens using the estimation of local 

FDR and immunogenicity prediction  

The previous section described the development of models for scoring MHC-peptide 

binding prediction and for immunogenicity prediction. The global/local FDR 

estimation model, MHCVision, in Section 5.2 can help to improve criteria selection 

for MHC binding peptides, whilst the Random Forest model in Section 5.3 can 

predicted immunogenicity of peptide sequences based on T cell preferences of 

chemical properties of amino acids. The outcomes from those two models contribute 

to a potent of neoantigen properties i.e. peptides that have a strong binding with MHC 

molecules and can stimulate T cell activity, thus, those models should be integrated to 

be a pipeline that produce a final probability of MHC binding and T cell recognition. 

The final probability can be used for neoantigen selection or prioritisation. In this 

scetion, MHCVision and the Random Forest models were combined to be a pipeline, 

so called MHCVision-RF, and the final probability was computed from true MHC 

binding probability (1-PEP) and immunogenicity probability. The final probability 

produced by MHCVision-RF can be served as ranking scores for neoantigen 

selection. The mathematical operation for final probability calculation was reported in 

Section 5.4.1, then the workflow of a pipeline and code implementation were 

described in Section 5.4.2. In Section 5.4.3, the pipeline was applied to data with 

experimental validation from previous published studies to explore if the ranking 

score from the pipeline can separate neoantigen  

5.4.1 Generation of the final probability of MHC binding and T cell recognition 

The final probability is the combination of true MHC binding probability (1-PEP) 

from MHCVision and immunogenicity probability from the Random Forest model, 
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and this score will be used as the ranking score for candidate neoantigen selection. To 

find the method of mathematical operation for final probability calculation, the 

correlation between true MHC binding probability and immunogenicity probability 

was observed using a scatter plot. The correlation coefficient between two data was 

evaluated by R2 calculated from the linear regression model. It was found that there is 

no correlation between those two scores (R2 = 0.019) suggesting that the production of 

those probability scores is independent (Figure 5.36A). Moreover, there are no 

correlation between those two probabilities when true binding probability was 

constrained for binding (1-PEP ≥ 0.8), or non-binding peptides (1-PEP ≤ 0.1) shown 

in Figure 5.36B and 5.36C, respectively. As mentioned before in Section 5.3, 

immunogenic peptides tend to be biased for MHC-binding peptides, but the data 

training for the RF model in this research was standardised the MHC binding ability 

between positive and negative classes to avoid the bias from binding and non-binding 

classification. Therefore, a lack of correlation between high binding probability and 

immunogenicity probability can indicate that the RF model in Section 5.3 purely 

distinguish immunogenic and non-immunogenic peptides based on T cell preference’s 

properties. Thus, the final probability produced from MHCVision-RF was calculated 

from a multiplication between true MHC binding probability and immunogenicity 

probability with an equal weight value of each factor. 
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Figure 5.36 The relationship between true MHC binding probability from 

MHCVision and immunogenicity probability from the Random Forest model. The 

correlation of immunogenic probability and non-restricted MHC binding probability 

(A), immunogenic probability and high MHC binding probability (B), and 

immunogenic probability and low MHC binding probability (C) 

5.4.2 The overall workflow of MHCVision-RF pipeline  

The pipeline for ranking MHC class I neoantigen was built by integrating of 

MHCVision which provides true MHC binding probability and the Random Forest 

model of immunogenicity prediction. Users can opt to use either MHCVision alone 

for other works that do not need immunogenicity scores, or they can use the whole 

pipeline that produces the final probability scores which can further apply to the 

process of candidate neoantigen selection. The algorithm and implementation of 

MHCVision were fully described in Section 5.2, and the algorithm of the Random 
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Forest model was reported in Section 5.3. Here, the workflow MHCVision-RF was 

described (Figure 5.37). 

a.) Prediction of MHC-peptide binding affinity 

MHC-peptide binding predictions are made between peptides and HLA types. The 

current version of MHCVision is available for only MHC class I that are supported in 

NetMHCpan 4.1 or MHCflurry. Users can opt to use either NetMHCpan or 

MHCflurry with the option that provides predicted binding affinity (IC50) in nM unit 

because this score is used for FDR/PEP estimation.  

b.) Input data preparation  

MHCVision will run for an individual HLA allele at a time since the algorithm was 

built with restriction of HLA-specific estimated values. Before running, the output file 

from NetMHCpan or MHCflurry need to be formatted in comma delimited format 

(CSV) with one HLA allele for a file, the input table must contain columns of 

peptides and their predicted IC50 in nM unit (Figure 5.38A). 

c.) Estimation of true MHC binding probability by MHCVision 

Global and local FDRs will be estimated from the distribution of predicted IC50 by 

MHCVision. The algorithm will annotate FDRs, PEPs, and reversed PEPs, so called 

true MHC binding probability for each peptide. 

d.) Immunogenicity probability prediction by the Random Forest model 

Peptides from an input data will be translated to numerical matrix and taken as input 

to the Random Forest model. The model will predict a probability of each peptide, 
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and that score will be transformed to the real probability, which is annotated as 

immunogenicity probability, by the logistic regression model.  

e.) Generation of the final probability of MHC binding and T cell recognition 

The final probability is computed from a multiplication between true MHC binding 

probability and immunogenicity score, thus final scores range from 0 to 1 where 1 is 

the best score for being a true neoantigen that means the peptide has a strong binding 

to MHC molecule and high potent for T cell recognition. 

The final output will return extra columns of statistical information from MHCVision, 

immunogenicity probability, and final probability MHC binding and T cell 

recognition for each peptide (Figure 5.38B). The information from MHCVision-RF 

gives users the ability to make an informed selection of neoantigens with high 

potential of being true neoantigens. 
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Figure 5.37 The workflow of MHCVision-RF and the calculation of final probability. 
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Figure 5.38 The example of input and output files of MHCVision-RF. The example 

of an input file format (A) and the columns written in an output file (B).
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5.4.3 Assessment of the final probability of MHC binding and T cell recognition 

with data sets from published studies 

To assess the separation ability of MHCVision-RF for neoantigen selection, the 

assessment analysis was performed by using data from two previously published 

studies. The list of 9 to 11 mers peptides of three patients with available HLA data in 

the experiment from Patrick Ott et al., 2020 was used to apply with MHCVision-RF. 

Peptides obtained from each patient consist of both immunogenic and non-

immunogenic peptides. The distribution of final probability scores between the 

immunogenic and non-immunogenic groups of M1 and L7 patients is not clearly 

different (Figure 5.39A and 5.39D, respectively). While the final probability of the 

immunogenic group showed higher median than that from non-immunogenic peptides 

in an M3 patient for both HLA-A*11:01 and A*68:01 (Figure 5.39B and 5.39C, 

respectively). Especially in A*11:01 of M3, the result displayed a significant 

difference of mean between immunogenic and non-immunogenic probabilities 

(student’s t-test, p-value = 0.0015; Figure 5.39B). A limitation of this analysis is that 

it was performed against only one or two HLA alleles of a patient that is available in 

the publication (more detail in Section 4.24), but a person can express at least three 

HLA alleles and potentially up to six alleles. As such, it is possible that some low 

probabilities found in immunogenic peptides might be due to the peptide binding to 

other HLA types carried by the patients that we have not been able to predict. 
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Figure 5.39 The final probability of immunogenic and non-immunogenic peptides 

from melanoma patients (M1 and M3) and a lung cancer patient (L7) (Patrick Ott et 

al., 2020). Each box plot represents the final probability scores, mean (red triangle), 

and median derived from immunogenic and non-immunogenic peptides. The analysis 

was performed against to HLA-B*51:01 for M1 (A), HLA-A*11:01 (B) and A*68:01 

(C) for M3, and HLA-B*81:01 for L7 (D) [172]. 

Due to the limitation of HLA information, the experimental data from Yong Fang et 

al., 2020 was also used to evaluate the pipeline because this work provided all HLA 

types of each patient. In that study, they reported peptides in a long sequence format 

that are designed by adding amino acid sequences to short mutated peptides from the 

prediction methods described in the paper. To reverse the process of neoantigen 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

153 

prediction, long peptides were needed to chop into 9mers which is the common length 

for MHC class I ligands. Since they pooled two or three peptides for T cell activity 

assay, it is a limitation to specifically identify which peptide in the pool can trigger T 

cell activity. Therefore, among all patients, four patients who has all positive pools 

(P003 = Pos1 and P004 = Pos2) or all negative pools (P011 = Neg1 and P016 = Neg2) 

were selected to perform the analysis. The predicted results from all HLA alleles of 

each patient were combined, and the top 20 scores were selected to observe the 

difference between positive and negative class. The analysis result was found that the 

highest 20 ranking scores of Pos2 and Neg1 are obviously different, and those from 

positive group have substantially greater than negative group (Figure 5.40). However, 

the ranking scores from Pos1 are not different from Neg1 and Neg2, and the scores of 

Neg2 has high outliers. In other words, we do not observe that patients with positive 

reactions generally are predicted to have peptides with higher immunogenicity. This 

result might be due to variation from external factors relating to different cancer 

types, general overall disease burden or a personal genetic background. Therefore, the 

comparison among patients with different cancer types might not be appropriate to 

represent a difference between ranking scores of immunogenic and non-immunogenic 

peptides because the ability of immune response from individuals are different. It 

might be possible that the experimental result from Neg2 might not be due to wrong 

selection neoantigen but might be affected by immunodeficiency of the patient. 
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Figure 5.40 The top 20 final probability scores of data obtained from positive and 

negative pooled peptides (Yong Fang et al., 2020). A box plot represents data of the 

highest final probability scores, mean (red triangle), and median of positive and 

negative pooled peptides from four cancer patients (Pos1: Adrenal Sebaceous 

Adenocarcinoma (P003), Pos2: Small Cell Lung Cancer (P004), Neg1: Ovarian 

Cancer (P011), and Neg2: Non-Small Cell Lung Cancer (P016)) [173]. 

To avoid the factor of immunogenetics across patients, a comparison within the same 

patient was performed using the data set from a patient who has both positive and 

negative pools (P001). The result showed that the ranking scores from positive pools 

are much higher than those from negative pools (student’s t-test, p-value < 0.00001; 

Figure 5.41A). Moreover, the scores with control 10% FDR, that means all peptides 

in both positive and negative group are potentially binding peptides, still showed 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

155 

higher scores in positives than negatives (student’s t-test, p-value = 0.0001; Figure 

5.41B) indicating that the differentiation is not only classified by MHC-binding 

affinity prediction, but also from immunogenicity prediction. In summary, even if 

there are some limitations because of lacking full information for neoantigen 

prediction analysis, results in the assessment analysis indicate ranking scores can 

distinguish neoepitopes from non-neoepitopes suggesting that the ranking score 

produced by the pipeline can assist with true neoantigen selection. 

 

Figure 5.41 The final probability of positive and negative pooled peptides from one 

cancer patient (Yong Fang et al., 2020). The box plots represent the data of final 

probability scores, mean (red triangle), and median of positive and negative pooled 

peptides from a melanoma patient (P001) with non-control FDR (A) and within 10% 

FDR (B) [173]. 
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CHAPTER 6  

DISCUSSION 

6.1 Neoantigen prediction using computational methods and the analysis of 

criteria selection from NetMHCpan and MHCflurry 

The current technology of genomics sequencing and bioinformatics allows the 

identification of tumour-specific mutation in protein sequences that play a role as 

neoantigens for cancer vaccines. Thus, identification of neoantigens is crucial for 

cancer therapeutics-based cancer vaccine. In Section 5.1, the analysis of neoantigen 

identification was performed via the application of genomic analysis with packages of 

bioinformatic software and structure analysis with a molecular dynamic simulation 

technique. In this study, the tissue and blood samples for DNA and RNA sequencing 

were obtained from nine colorectal patients from King Chulalongkorn Memorial 

Hospital, Bangkok, Thailand. This part has been achieved through collaboration with 

a research team at the Faculty of Medicine, Chulalongkorn University, they kindly 

shared sequencing data sets from their cohort to use as input data for performing 

neoantigen prediction pipelines. Using prediction methods based on sequencing data, 

there are several factors that can affect the accuracy of the identification (for 

workflow see Figure 4.1). The quality of tumour tissue is an initial factor that results 

to a quality of sequencing depth. The high depth of sequencing data can contribute 

more accuracy in a set of tumour specific-mutations that are a source for neoantigens. 

Besides the biological factors, accurate variant calling analysis with bioinformatic 

software is critical since falsely identified mutations increase the risk of getting false 

neoantigens. This study utilised GATK analysis that is a standard pipeline for 
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identifying SNPs, small Indels in DNA data [156]. Since the first step that can rule 

out non-neoantigens is the prediction of binding affinity between the mutated peptide 

and a patient specific HLA, hence, the precision of determining MHC from a patient 

is also important. MuPexI uses NetMHCpan3.0 for MHC-peptide binding prediction, 

NetMHCpan has been accepted as a gold standard for MHC-peptide binding 

prediction in the present [175]. In this study, Kallisto was used to quantified gene 

expression level, the benchmarking with standard RNA data showed its performance 

is fast and accuracy is as good as existing tools [90].  

Neoantigens are highly person-specific, and mutations can occur in any genes besides 

common cancer driver genes, thus neoantigen identification of individual must be 

tailored made. As described above, good quality of sequencing data is firstly 

important for a neoantigen prediction pipeline. However, in some cancer cases, the 

tissue sample from surgery might not feasible or not enough for making a good 

quality sequencing data. Furthermore, different cancer types have various level of 

mutation burden, low mutation burden obstructs the neoantigen identification, 

consistent with Figure 5.2 that showed a direct proportion between numbers of non-

synonymous mutations and identified candidate neoantigens. Several studies have put 

the effort to investigate common mutations to create cancer vaccine as off-the-shelf 

therapies. There have been approaches to mine data from publicly data in The Cancer 

Genome Atlas (TCGA) to explore the common somatic mutations present in each 

tumour type [176]. The analysis from that research found that TP53 mutation is highly 

found across breast, head and neck and colon cancer [177]. That result agrees with our 

finding that neoantigens from TP53 mutations are found in 4 of 9 colon cancer 
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patients suggesting that shared mutation-specific tumour could be possibly used for 

generic vaccine development. 

Besides the method relying on sequencing data and binding prediction algorithms, this 

analysis demonstrated a proof of concept of structure-based analysis for scoring 

MHC-peptide binding energy. The results from MD simulation analysis provided 

insight into the energetic binding between MHC molecule and peptide. That 

information can reasonably explain the interaction of MHC-peptides by 

physicochemical properties of amino acids in a peptide and in a binding groove of 

MHC molecule. The advantage of structure analysis is that results can be visualised, 

which allow us to observe the side chain direction of mutated residue(s) that can 

further infer the potential for immunogenicity of candidate peptides. It has previously 

reported that peptides with their mutated residues orientated towards the solvent are 

likely to be immunogenic peptides because they are well captured by T cell receptor 

binding region [52]. However, the approach of MD simulation might not genuinely 

represent binding interaction in the real biological environment and not be suitable for 

high throughput screening in practice because it consumes high computational 

resources. Moreover, there are only a few MHC types that have a crystal structure 

deposited in PDB. For other alleles, using a predicted structure might increase the risk 

for getting inaccurate results. With those limitations, it might not appropriate for using 

MD results to validate predicted results from a sequence analysis. Therefore, MHC-

peptide binding prediction algorithms relying on sequence analysis was emphasised in 

this study.  
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In the phase of binding affinity prediction, not only mutated gene expression data but 

the detail of MHC types of patients is also required. In the present, the performance of 

binding prediction algorithms relies on experimental data of peptide-MHC binding 

affinity deposited in the IEDB [64], then the accuracy of prediction result might be 

biased due to lacking data of some MHC types. The diversity of MHC molecules is 

extremely polymorphic due to extensive polymorphism at most loci, and expression 

of MHC molecules may have evolved through diversity of pathogen specific immune 

system. Hence, some haplotypes might be common in specific for some ethnic 

groups, which might not be common in deposited data in available databases [12]. 

Each MHC type has a binding preference to specific peptides, those uncommon types 

might be inadequate experimental binding affinity data in the database, thus, the 

algorithms might provide false predicted scores due to lack of training data. The 

analysis in the Figure 5.7 supported the hypothesis above, at the 1% FPR the 

predicted IC50 has high variation across different HLA alleles, even in those are in the 

same supertype i.e. the predicted IC50 of all alleles in the family HLA-A*2 supposed 

to be similar, but the result displayed high variation among them. Furthermore, the 

predicted scores at 1% FPR are diverse from the fixed threshold of 500 nM indicating 

that using the fixed threshold for any HLA alleles might not be appropriate and cannot 

control a false positive rate in the predicted binding peptides.  

In summary, the results provided by Section 5.2 demonstrated the use of a practical 

workflow for neoantigen identification as well as the behaviour of MHC-peptide 

prediction algorithms. The neoantigen identification can be generated by a sequencing 

analysis approach with WES and RNA sequencing data using bioinformatic software 

for variant calling, identifying MHC types, quantifying gene expression levels, and 
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MHC-peptide binding prediction algorithms. The approach of protein structure-based 

analysis was also promising to quantify binding strength between MHC and a peptide. 

Finally, the predicted behaviour of the gold standard MHC-peptide binding prediction 

algorithms including NetMHCpan and MHCflurry was explored. The predicted scores 

at 1% FPR across different HLA alleles are greater or lower than the fixed threshold 

suggesting using the fixed threshold might not deliver a stable ratio of true and false 

positives. Therefore, the statistical values that can describe the probability of 

predicted scores for being true or false positive is essential to improve the criteria for 

binding peptide selection, which will be discussed further in the following sections.  

6.2 The study of data distribution of MHC-peptide binding affinity from 

NetMHCpan and MHCflurry for developing a model to estimate FDR and PEP 

MHC-peptide binding affinity prediction is widely used in the immunology research 

e.g. designing immunogenic peptides for vaccine development as shown in the 

previous results. NetMHCpan (from version 4.0 onward) produces a % rank score for 

each peptide predicted, estimated as the rank position of a given score within a list of 

scores from a set of 125,000 of 8-12 mers random natural peptides (25,000 of each 

length), assumed to represent the distribution of false results (non-binders). Rank 

scores < 2% is commonly used to distinguish binding and non-binding peptides 

because it reduces the known bias of binding preference across different MHC 

molecules [2]. If random peptides are assumed as false results, thus, the predicted % 

rank for each predicted IC50 score is approximated as the false positive rate. However, 

using only the FPR might not be sufficient to quantitatively evaluate whether a 

predicted binding score for a peptide is a true or false positive, hence, the statistical 

measurement that can control the false positive rate might help to increase the 
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accuracy for binding peptide selection. In Section 5.3, the model to estimate statistical 

values including FDR and PEP of an individual predicted score was developed. 

The distribution of predicted binding affinity scores (IC50) coming from 

NetMHCpan4.1 was firstly observed. The distribution of predicted scores of MS 

peptides from multi-allelic cells to an MHC molecule displayed a bimodal distribution 

that contains two separated peaks. From a bimodal distribution, it can infer that the 

left peak contains peptides that will truly bind to an HLA allele (true positives). The 

right peak contains non-binding peptides to a given HLA allele. The distribution of 

the mixture of MS-random peptides for 85 HLA alleles in Figure 5.11 also 

demonstrated a bimodal shape with clear separation between MS and random 

distribution. Although, there are a small number of alleles that do not follow the 

expected distribution shape. First, for some alleles e.g. A*34:01, B*15:02, C*12:02, a 

small number of MS peptides overlap to the random peptide distribution suggesting 

that they could be incorrect identifications of peptide sequences from MS data. 

Second, almost alleles displayed symmetrical shape for binding peptides and right 

skewed distribution for random peptides, however, there are some alleles, mostly 

HLA-C, where their distribution of MS peptides showed asymmetrical shapes and do 

not have particularly clear separation of assumed “true” and “false” positive 

distributions e.g. B*14:02, C*04:01, and C*07:02. From the overall inspection of 85 

HLA alleles and the analysis of statistical models fitting data distribution, the beta 

mixture distribution was finally selected to model a bimodal distribution of predicted 

scores from the mixture of binding and non-binding peptides. The usage of beta 

model fitting MHC I predicted scores is agreed by the study of Zeng‘s group that they 

used beta distribution to model the data distribution of MHC-peptide binding affinity 
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for MHC class I [178]. Moreover, the beta model is the most flexible distribution 

shapes depending on different combinations of the parameters of α and β [149]. As 

the beta mixture was used to model the data distribution of predicted scores, thus, the 

EM algorithm with a method of moments was implemented for estimating parameters 

of a beta mixture distribution. 

The study of parameter estimation using the EM algorithm with method of moments 

for beta mixture model has been previously reported for the application in the field of 

molecular biology [149]. The performance of the non-constrained model for the 

predicted scores of 85 alleles (Figure 5.14) is not accurate for some data sets, 

specifically, those data sets have been described as having unusual distributions in 

Figure 5.11 e.g. B*14:02, C*04:01, and C*07:02. These data sets do not have 

markedly clear separation of presumed true and false distributions indicating that the 

parameters from indistinct separate data is not well estimated by the typical EM 

algorithm. Thus, it is important to improve the model for unclear separate data 

because the predicted scores in the overlapped area are very uncertain if they should 

belong to true or false data. The EM algorithm was then modified by constraining the 

estimated parameters of false distribution with the ranges of 𝛼2 and 𝛽2 calculated 

from predicted scores of random data with different sizes and peptide lengths for 85 

alleles. The restriction causes the false data to be well captured that might 

consequently forces the true data to be correctly modelled. That assumption is 

supported by the results in Figure 5.17 demonstrating that the constrained model has 

obvious improvement for the unclear separate data sets that are not correctly 

estimated by the non-constrained model. In practice, these two constraints mean that 

when the algorithm detects evidence a very large imbalance, in either direction (i.e. all 
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true or all false), the beta 1 or beta 2 is correctly fitted to the appropriate distribution. 

Since this developed model was built by relied on the predicted scores from 

NetMHCpan4.1, thus the application of this model is available for MHC types 

supported in NetMHCpan4.1, which cover for 2,915 alleles for HLA-A, -B, and -C 

[102]. 

The global FDR can describe the error rate that accumulates in the selected binding 

peptides from the prediction across the whole data set, while PEP values can describe 

a local false probability of an individual peptide in the data set. The results 

demonstrated that some data sets might get over 10% FDR when using the 2% rank as 

a threshold, which might be too high risk to control false positives (Figure 5.24A). In 

practice, the FDR observed is dependent upon the allele selected, as well as the actual 

(unknown) count of true positives in the data, relative to false positives. Moreover, 

there is variability in PEP values close to the 2% rank score. In some data sets the 

predicted scores ≤ 2% rank can have PEP values very close to 1, but in other data sets 

the predicted scores ≥ 2% rank have a PEP less than 0.1. Furthermore, the analysis of 

predicted results for 55 alleles coming from MHCflurry discovered similar trends as 

for NetMHCpan. This finding indicates that using only the predicted % rank for 

thresholding might wrongly accept false binding peptides or miss some true binding 

peptides in different cases, which cannot normally be differentiated straightforwardly. 

The final implementation of parameter estimation model and FDR/PEP calculation 

were built by a Python script, the software was named MHCVision, available at 

https://github.com/PGB-LIV/MHCVision. In brief, MHCVision performs parameter 

estimation using the EM framework for a two-component beta mixture model, 

representing the distribution of true and false scores of the predicted data set. The 

https://github.com/PGB-LIV/MHCVision
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estimated parameters are further used to calculate FDR/PEP of an individual peptide’s 

predicted score. The input requires a column of predicted IC50 scores, and the output 

will return the estimate statistical values including FDR and true posterior probability 

(a converse PEP, 1-PEP) for every predicted peptide in each data set for a specific 

HLA allele. Moreover, the approach of the model was also extended to MHCflurry 

because the performance of this tool has been reported as good as NetMHCpan [3], 

users can opt to run with MHCflurry, the supported alleles are limited to 79. Finally, 

for different downstream uses of peptide binding data, rather using solely the fixed 

threshold as the predicted % rank to classify or prioritise binding peptides, this study 

would recommend using MHCVision for calculation of FDR and PEP and selection 

of appropriate threshold to reduce a risk of getting false positive and gain confidence 

for those peptides that their scores might be determined as non-binders via 2% rank 

threshold. 

In conclusion, Results from Section 5.3 reports on the successful development of a 

parameter estimation model for beta mixtures for predicted binding affinity scores, 

and tested with data from 85 HLA alleles. The statistical values including FDR and 

PEP of an individual predicted score can be computed from the best estimated 

parameters derived from the beta parameter estimation model. The converse PEP 

value, true probability, of an individual predicted score is promising for prioritisation 

of peptides. The software was implemented and deposited at https://github.com/PGB-

LIV/MHCVision. 

https://github.com/PGB-LIV/MHCVision
https://github.com/PGB-LIV/MHCVision
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6.3 Immunogenicity predictor developed by the Random Forest model 

The determination of immunogenicity for MHC presented peptides aims to identify 

short peptides that can activate T cell response, either CD4+ or CD8+ T cells. 

Identification of immunogenic peptides is of great interest for immunology research 

such as understanding disease etiology, monitoring of immune response, or designing 

epitope-based vaccine. For neoantigen-based cancer vaccine development, the 

identification of immunogenicity is essential for the selection of true neoantigens to 

reduce the risk of getting a false positive and thus help to increase the success rate of 

neoantigen-based cancer vaccine therapeutic. Nevertheless, the process of antigen 

presenting and TCR recognition is highly complicated, the precise mechanism of 

binding interaction between TCR and an MHC presented peptide has not been clearly 

revealed.  

Previous studies have been studied importance characters of amino acids and 

positions in immunogenic peptides. Those studies reported that the physicochemical 

property of amino acids corresponding to size, hydrophobicity, entropy, polarity, and 

binding interaction are associated with the preference of TCRs [113, 130, 142]. Those 

properties were applied for amino acids in a peptide sequence to create a set of 

features for building a prediction model with sequence-based learning. The existing 

models showed the capability to distinguish immunogenic peptides from non-

immunogenic peptides with moderate performance, the reported ROC score is 

approximately 0.75 (0.65 and 0.78 for Immunogenicity and INeo-Epp, respectively) 

[130, 142]. An antigen or a peptide that can elicit an immune response must be a 

foreign substance to the host immune or can be recognised as non-self by the host’s 

immune system. Since during T cell development, those T cells who have a strong 
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binding to self-peptides are eliminated, the negative selection results in a population 

of T cells that promptly bind to non-self antigens [5]. Thus, the properties of 

foreignness to self of input peptides were utilised as features for training the 

immunogenicity classification model.  

Initially, 182 features were used to build the model, the feature importance analysis 

was found that the summation physicochemical property of all amino acids in a 9mers 

peptide and a BLAST score feature have the top ranks compared to others. However, 

the individual importance values were very low indicating a small contribution from 

many features, likely highly correlated with each other, leading to a model that is 

difficult to interpret. The approach of feature selection is commonly used for high-

dimensional data analysis to improve the model predictability by removing irrelevant 

and redundant features resulting to improvement of learning accuracy, reducing 

learning time, and generating understandable learning results [179]. Although, the 

analysis from the feature selection experiment demonstrated that a subset from the 

original feature set does not improve the AUC score, a small set of features might 

reduce variation from irrelevant features and can simplify the model prediction that 

can further elaborate which features mostly contribute to the model classification.  

The result from benchmarking analysis showed that the Random Forest classification 

model in this study outperforms Immunogenicity from Calis et al., this might be due 

to update of training data, and the model from Immunogenicity masked the positions 

corresponding to anchor residues this might miss signals to differentiate epitope and 

non-epitope peptides [130]. Even though the model in this study did not mask position 

related to MHC anchored residues, the training data set was cleaned to match a 
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distribution of predicted IC50 between positive and negative data to prevent bias from 

binding affinity property. INeo-Epp is a current immunogenicity prediction tools 

trained by only human peptides presented by HLA supertypes, and the AUC from 

external validation from this study showed about 0.779. It is interesting that the AUC 

score came from the model which removed peptides that have predicted % rank > 2. 

Moreover, the most importance feature contributing to the model was found as % rank 

from MHC-peptide binding prediction [142]. Therefore, it is likely that the reported 

prediction statistics from INeo-Epp might be mostly contributed from distinguishing 

binding and non-binding peptides but might not genuinely classify immunogenic and 

non-immunogenic peptides. This also might explain why INeo-Epp yielded poorer 

performance in our benchmark, with the data sets matched by MHC-peptide binding 

affinity for both positive and negative data. Overall, even the model performance 

from this work does not reach very high accuracy (e.g. >90%), it is still outperforms 

existing tools. 

Finally, this developed model returns probability scores, which are computed from the 

average probabilities over the number of trees in the forest [180], instead of predicted 

class of immunogenic or non-immunogenic. Probability scores provide several 

applications such as ranking, thresholding with uncertainty predicted scores, and 

deciding how to interpret the predicted result. Moreover, to prevent an inconsistency 

from probability estimation for different input data sets in the future, the pseudo-

probability scores produced from the Random Forest model were transformed to 

calibrated probability. The calibrated probability score allows for better comparison 

across results from different prediction runs, and as shown in Section 5.4, can be 
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combined straightforwardly with probability of peptide binding to develop a full 

prediction pipeline.   

In summary, the immunogenicity prediction model was developed using the Random 

Forest algorithm, and the model was trained by physicochemical properties and 

foreignness features corresponding to immunogenic and non-immunogenic peptides 

derived from immunogenicity experiments. The developed model in this work 

exhibits performance improvement over existing tools. Moreover, the predictability of 

this model is independent of MHC-peptide binding affinity. Thus, this predictor 

should truly contribute to distinguish epitopes and non-epitopes relying on characters 

of T cell preference. To apply the immunogenicity prediction for neoantigen 

selection, the integration of ability of MHC-peptide binding obtaining from Section 

5.2 should be combined to immunogenic probability scores, which is discussed in the 

following section. 

6.4 An implementation of MHCVision and Immunogenicity predictor for 

creating a pipeline for ranking predicted neoantigens  

Identification of neoantigen from NGS data utilising the approach of bioinformatics is 

a complicated task involving several processes of biological sample preparation, 

bioinformatic analysis of NGS data, computational prediction, and candidate 

neoantigen selection. Most efforts of neoantigen prediction focus on a strength of 

MHC-peptide binding affinity using MHC-peptide binding prediction tools to exclude 

non-binding peptides. Some predictions also incorporate the biological processes of 

antigen processing including proteasomal cleavage e.g. NetChop [181] and peptide 

transports efficiency e.g. NetCTL [182] , or a stability between peptides and MHC 
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molecules e.g. NetMHCStab [138],  those information are expected to help to rule out 

false binding peptides. It has been reported that about thousands of somatic mutations 

are identified in most neoantigen studies, and hundreds of peptides are predicted as 

MHC binding peptides, however, only a handful are found to elicit T cell response 

[183]. Therefore, there is a high risk to get false positive neoantigen if the selection 

method relies on MHC-peptide binding. Even MHC binding and antigen processing 

are necessary process for being neoantigens, they might not be sufficient for 

determining true neoantigen because an ability of immunisation is obligatory for 

being an epitope. The final probability from the pipeline in this study is the 

combination between the same weight of scores from true MHC binding probability 

and immunogenicity probability, which can be served as ranking scores that can help 

users to rank candidate neoantigens and make a short list from the top rank scores. 

Moreover, the expression of genes that neoepitopes originate from is the most 

essential for neoantigen based cancer vaccine therapy in practice because it is 

meaningless to inject non-expressed peptides to cancer patients. However, RNA 

expression is not included in the final probability produced by this current model 

because gene expression levels is personalised data that is specific for an individual. 

The major limitation for building a model with the prediction of gene expression is 

RNA level is dynamic and highly tissue specific, which means that different types of 

cancer or different stages of the same cancer types might have different sets of gene 

expression. Thus, for the best result with using MHCVision-RF for neoantigen 

identification, users can apply gene expression levels, e.g. TPM > 1 is typically used 

as a threshold for gene expression, to rule out non-expressed peptides that have high 

final probability scores so that could reduce a risk for getting false neoantigens.  
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The benchmarking analysis with existing tools that provide prioritising scores for 

neoantigen identification have not done yet in Section 5.4 because the complete of 

WES and RNA sequencing data as well as the experimental validation are needed for 

the comparison analysis. A benchmark analysis would require using the raw FASTQ 

data to control pre-processing steps i.e. sequence alignment, variant calling, 

quantification of transcripts, and HLA genotyping to ensure that the quality of an 

input data is same for any software. Besides genomic and transcriptomic data, the 

experiments of T cell reactivity are necessary to validate the immunogenicity of 

selected candidate neoantigens. The clinical study of neoantigen based cancer vaccine 

is ongoing at Dr. Trairak Pisitkun’s research centre (CUSB), Chulalongkorn 

University. Therefore, once the complete data from experimental could be accessed, 

the comparison analysis between MHCVision-RF and exiting pipelines will be 

performed and published, if results are encouraging. 

In summary, the MHCVision-RF pipeline was built from the integration of 

MHCVision and the immunogenicity prediction model. Scores from those two models 

were multiplied to produce a ranking score that can contributes to MHC-peptide 

binding and immunogenicity of each predicted peptides. The capability of ranking 

scores produced by this software was validated with data from published studies, and 

those ranking scores can differentiate data between positive and negative class. 

Finally, the source code of MHCVision-RF was implemented and available at 

https://github.com/PGB-LIV/MHCVision-RF 

https://github.com/PGB-LIV/MHCVision-RF
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6.5 General Discussion  

Selection of candidate neoantigens is a crucial step to enable the usage of neoantigen 

based cancer vaccine in clinical practice. There are several factors related to 

biological events including antigen processing, MHC-peptide binding, and T cell 

recognition that must be carefully considered to determine whether a candidate 

peptide could be a neoantigen. At present, computational methods typically exploit 

the prediction of binding affinity between MHC molecules and peptides as the 

primary judgment to distinguishing putative neoantigens from non-neoantigens. The 

precision and accuracy of MHC-peptide binding affinity prediction is therefore 

important for neoantigen identification. Although, the current benchmark of HLA 

class I binding prediction results showed the best performance of 90% sensitivity and 

98% specificity, there remains a high risk of getting false positives if an inappropriate 

threshold is used, and prior to this work, we are now aware of a straightforward 

method for quantifying this phenomenon. FDR is an acceptable statistical value to 

control false positive rate in predicted results. The study in Section 5.2 is a novel 

perspective in the field of MHC-peptide binding affinity prediction. Instead of 

focussing on the improvement of MHC-peptide binding prediction algorithms, the 

model developed in Section 5.2, MHCVision, emphasised providing statistical values, 

global and local FDR, for predicted scores coming from MHC-peptide binding 

prediction tools. The statistical values produced by MHCVision can serve as 

additional information to facilitate users to define binding peptides. Moreover, the 

performance of MHCVision is independent from the accuracy of prediction tools 

because this model estimates global and local FDRs from the data distribution of the 

predicted result. Apart from neoantigen selection, MHCVision can be further applied 
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for any kind of works related to the prediction of MHC-peptide binding affinity. It is 

worth stating potential limitations and caveats to this work. First, we have tested the 

algorithm under a range of scenarios, where we believe we have good control of the 

ground truth i.e. through mixing true (MS identified peptides) and false (random) data 

points in different ratios. However, within both sets there is potential for 

imperfections. Within MS data sets, as we comment in Section 5.2, it is possible that 

some incorrect peptides have been identified, which would not be true positives. 

Similarly, it is quite possible that some proportion of random peptides are indeed true 

binders. Nevertheless, MHCVision was not trained on the labels per se, these were 

used to generate the types of distribution shapes we expect will be encountered in real 

data sets. It is of course possible that certain peptide set – allele combinations could 

produce completely unexpected data distributions which we have never seen before, 

e.g. multi-modal, which might cause some inaccuracies for MHCVision prediction. 

We have tested the performance of MHCVision with NetMHCpan and MHCflurry, 

two of the best performing and most popular binding algorithms, but we cannot 

guarantee performance with other predictors, and the model would likely need 

retraining for MHC Class II prediction, which is a more complex problem. Further 

detail on how this could be done is given below in Future Work. 

As mentioned above, there are several factors involved in biological events that are 

normally used to consider for neoantigen identification. Beyond MHC binding ability, 

an ability for being T cell epitopes is a critical property to be a neoantigen. 

Determining T cell epitopes is very challenging because of the extreme diversity of 

TCRs and the limitation of T cell epitope data. T cell epitopes obtained from T cell 

assays experiments deposited in databases do not fully cover all types of TCRs 
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diversity. Thus, the immunogenicity prediction model developed in Section 5.3 is not 

a completely novel framework, since the database of physicochemical properties of 

amino acids for generating a set of features and data for training the model have been 

also used in previous studies. However, a new aspect of this developed model is a 

concerning the bias from binding and non-binding classification. T cell epitopes must 

be MHC binding peptides, thus T cell epitopes derived from experiments mostly have 

a good MHC binding affinity. In contrast, non-epitopes that have a negative result 

from T cell reactivity assays might not be able to bind to MHC molecules, meaning 

they are not presented to T cells. If epitope and non-epitope data are used as positive 

and negative classes to train the model without calibrating the MHC binding affinity, 

it might be possible that the model will learn binding and non-binding properties from 

amino acids in a peptide instead of properties for T cell recognition. The 

standardisation of positive and negative data for model training in Section 5.3 can 

help to rule out that bias, and build on the fact that very extensive work has already 

been done to build excellent classifiers for MHC-peptide binding. Even though the 

performance of this developed model might not reach 90% accuracy, it still 

outperforms the existing tools. There are several ways in which to improve this 

immunogenicity prediction model in the future. This model was built from training 

data that does not consider HLA allele specific peptides, and trained only for peptides 

with nine amino acids in length. In this thesis, the model was build with an intention 

to be assembled with MHCVision to produce a probability that describe the ability for 

a peptide to be a strong MHC binder and immunogenic. 

The integration of MHCVision and the immunogenicity prediction model was 

implemented to build a pipeline named MHCVision-RF in Section 5.4. The final 
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probability produced from this pipeline is from the combination of true MHC binding 

probability and immunogenicity probability. As described above, MHC-peptide 

binding scores of the training data for the immunogenicity prediction model were 

standardised between epitopes and non-epitopes. Hence, it can ensure that a combined 

score is generated from the independent scores from MHC binding and 

immunogenicity probability. Although, a probability provided from MHCVision-RF 

does not describe whether the peptide can be expressed in protein level, users can 

manually apply the RNA expression levels to consider in neoantigen selection or 

prioritisation to get the best results with low risk of getting false neoantigens. At the 

moment we do not have any sufficiently large training data to know how to calibrate 

or combine the immunogenicity/binding probability with gene/protein abundance 

data, in terms of the importance of contribution from each. This must be an area for 

future focus. 

CHAPTER 7 

CONCLUSION AND FUTURE WORKS 

The aim of this chapter is to summarise the content of this thesis, extend the general 

discussion of the models performed in each result section and describe a perspective 

of future work related to this current research. Finally, general conclusions of this 

work are summarised at the end. 

7.1 Summary of thesis 

The work carried out in this thesis can be summarised in three main components: first, 

the development of the model for estimating global and local FDR for MHC-peptide 
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binding affinity predicted data; second, the development of a prediction algorithm for 

determining a probability of immunogenicity, and third, the integration of those two 

models to produce a pipeline that provides a probability of true MHC binding 

probability and T cell recognition probability. The following presents a summary of 

the conclusions from each result section. 

Section 5.1: The study of neoantigen prediction using existing bioinformatics 

software and public MHC-peptide binding affinity prediction tools 

This section demonstrated the practicability of neoantigen identification using the 

approach of bioinformatics and prediction algorithms. Moreover, the concept of 

protein structural analysis using MD simulation technique was performed, and the 

limitations of this method were reported. The analysis of random background and 

false positive rate of the outputs produced by MHC-peptide binding prediction 

algorithms (NetMHCpan and MHCflurry) were performed to gain a better 

understanding of the behaviour of those prediction tools. The analysis summarised in 

this section is the rationale for the study of the improvement of criteria for neoantigen 

selection on the basis of predicted MHC-peptide binding affinity and 

immunogenicity.  

Section 5.2: The development of a model to estimate statistical properties from 

MHC-peptide binding affinity prediction 

This section initially described the background of statistical data distribution models 

and the mathematical context of the EM algorithm. This section described the best fit 

of beta mixture distribution model for predicted data produced by NetMHCpan. The 

modification of the EM algorithm with the method of moments for beta parameter 
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estimation was also included in this section. The application of this developed model, 

named as MHCVision, for global and local FDR estimation was demonstrated at the 

end of this section, and these results have been published in Bioinformatics [184]. 

Section 5.3: The development of an immunogenicity prediction model for 

distinguishing immunogenic and non-immunogenic peptides using Random 

Forest 

In this section, the development of the model for immunogenicity prediction was 

described. This section included the explanation of features related to T cell 

preference properties and the Random Forest algorithm that is used for building the 

immunogenicity prediction model. The performance and comparison analysis of this 

model against existing tools was demonstrated at the end of this section. 

 

Section 5.4: A pipeline for ranking predicted neoantigens using the estimation of 

local FDR and immunogenicity prediction  

The assembly of MHCVision from Section 5.2 and the immunogenicity prediction 

model developed in Section 5.3 was performed in this section, called MHCVision-RF. 

A generation of the final probability from a combination of true MHC binding 

probability and immunogenicity probability was explained. In addition, the code 

implementation and workflow of this pipeline were also described. Finally, the 

assessment of a separation ability of the model to distinguish neoantigen and non-

neoantigen from published data sets was demonstrated in the final part of the section. 
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7.2 General conclusion 

Vaccines are a type of immunotherapy, which normally protect people from diseases. 

They are generally made from weakened or innocuous versions of pathogens. When 

people get vaccinated, their immune system will be stimulated, and naïve T cells will 

be active and develop to memory T cells specific to those pathogens. With the same 

concept of immunostimulants but unlike general vaccine that are used for protection, 

cancer vaccines are designed for people who already have cancer. Cancer vaccines are 

typically designed from a part of protein particularly expressed in cancer cells but not 

expressed in normal cells, i.e. neoantigens. Once cancer patients get a vaccine 

formulated from neoantigens, the immune system will recognise those neoantigens to 

attack and destroy the cancer cells that carry those neoantigens. The approach of 

personalised neoantigen based cancer vaccines might be feasible for various types of 

cancer compared to other cancer immunotherapies, such as monoclonal antibodies or 

CAR T cells, because generation of neoantigens relies on the individual genetic 

background. Moreover, the potential of this approach on neoantigen-specific T cells 

activation provides the development and proliferation of memory T cells that might 

achieve long-term protection against disease recurrence. 

In general, the processes for obtaining a list of neoantigens based on NGS data 

primarily exploit software packages in bioinformatics and computational methods. 

One of the limitations of peptide-based cancer vaccines is that a small handful of 

peptides are practically selected for the step of peptide manufacture and vaccine 

production due to cost and time effective. The current criteria for neoantigen selection 

utilising the information provided by the prediction algorithms might yield too many 

numbers of peptides to proceed in vaccine production. This thesis was mainly 
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focussed on the development of the models to facilitate the improvement the criteria 

for selecting and prioritising potent neoantigens to make a short list of candidate 

neoantigens with low risk of getting false positives. In this thesis, the two models that 

contribute true MHC binding probability and immunogenicity probability were 

successfully developed, and the integration of those two models provided a pipeline 

producing the final probability that describe the ability of MHC binding and a potent 

for being T cell epitopes. Finally, the pipeline developed in this thesis can provide a 

probability score that can described a potent for being real neoantigen. The software 

and the source code of MHCVision and MHCVision-RF are freely available at 

https://github.com/PGB-LIV/MHCVision and https://github.com/PGB-

LIV/MHCVision-RF, respectively. 

7.3 Future work 

The following topics are projects that could extend from the current works in this 

thesis and should be performed in the future. 

7.3.1 Extensibility of MHCVision model  

The current version of MHCVision is available for predicted data produced by 

NetMHCpan and MHCflurry. Extending the application of MHCVision for other 

MHC class I prediction tools should be further performed to give more flexibility for 

users. The shape of data distribution produced from other prediction tools must be 

explored, if they can fit well to beta mixture distributions, it could be possible to use 

the current version with those tools. However, if their data distribution is not well 

modelled by a beta mixture distribution, the data distribution model and constrained 

values might need to be modified. Furthermore, the development of the MHCVision 

https://github.com/PGB-LIV/MHCVision
https://github.com/PGB-LIV/MHCVision-RF
https://github.com/PGB-LIV/MHCVision-RF
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for MHC class II binding prediction also should be perform for the next version. To 

extend the MHCVision algorithm to MHC class II, the data sets of natural MHC II 

presented peptides from MS analysis or other biological experiments must be 

collected for the learning phase, and the core concept of the algorithm of the current 

version with minor modification could apply to the distribution of predicted data 

produced from MHC class II-peptide binding affinity prediction tools. 

7.3.2 The development of the automated software for neoantigen identification 

by assembling a package of bioinformatic software to MHCVision-RF 

To make MHCVision-RF more practical for clinical research or application, 

automated software with the upstream steps of data pre-processing and downstream 

for neoantigen prioritisation should be assembled. The steps of pre-processing data 

include WES data analysis, variant calling, HLA-genotyping, and short mutated 

peptides extraction, whereby users could opt to provide the input file either a raw 

FASTQ format or a variant calling file format. The main prediction part will take a 

list of short mutated peptides and patient’s HLA alleles to the MHC-peptide binding 

prediction tool, then MHCVision-RF will compute the final probability of true MHC 

binding and T cell recognition for each peptide. If the RNA sequencing data is 

available, user could provide a raw FASTQ file or a level of transcripts file for the 

input parameters, the expression level of genes that mutated peptide originate from 

would be considered together with the final probability from MHCVision-RF to 

prioritise or select candidate neoantigens. Finally, the output would return data in a 

tabular format containing the multiple scores of each peptide, which are predicted 

binding affinity scores, true MHC binding probability, immunogenicity probability, 
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and a final probability of MHC binding and T cell recognition as well as gene 

expression level (if applicable). The installation of the automated software pipeline is 

planned as a step of neoantigen identification in future projects on the development of 

neoantigen based cancer vaccine at Chulalongkorn University to test the workability 

of this software in clinical level. 
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