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CHAPTER I 
INTRODUCTION 

1.1 Background and Signification of the Research Problems  

A very brief overview of the enormous field of image 
restoration is provided here. Image restoration remains an important 
research topic and one of the major applications driving the theory and 
practice of image processing since digital computer made processing 
large amounts of data possible. This section is not meant to provide a 
review of the completed literature on image restoration, (the reader is 
referred to the texts [1, 17, 33, 44, 64, 80, 83, 85] for that) but to provide 
some perspective on how SRR (Super-Resolution Reconstruction) 
algorithms grew out of the existing body of research and how these new 
SRR algorithms define directions for future work. 

The spatial resolution that represents the number of pixels 
per unit area in an image is the principal factor in determining the quality 
of an image. With the development of image processing applications, 
there is a great demand for high-resolution (HR) images since HR images 
offer not only the viewer a pleasing picture but also additional details that 
are important for the analysis in many applications. The most direct 
solution to increase spatial resolution is to reduce the pixel size (i.e., 
increase the number of pixels per unit area) by sensor manufacturing 
techniques. As the pixel size decreases, however, the amount of light 
available also decreases. It generates shot noise that severely degrades the 
image quality. To reduce the pixel size without suffering the effects of 
shot noise, therefore, there exists the limitation of the pixel size reduction, 
and the optimally limited pixel size is estimated at about 40 µm2 for a 
0.35 µm CMOS processor [57, 95]. The current image sensor technology 
has almost reached this level. Another approach for enhancing the spatial 
resolution is to increase the chip size, which leads to an increase in 
capacitance. Since large capacitance makes it difficult to speed up a 
charge transfer rate, this approach is not considered effective. The high 
cost for high precision optics and image sensors is also an important 
concern in many commercial applications regarding HR imaging 
therefore many digital image restoration techniques have been proposed 
since 1970s. 

Image restoration techniques are broadly categorized into 
two classes based on the number of observed frames. Specifically, the 
categorization is into the classes of single-frame and multi-frame 
restoration methods. The classical image restoration problem is 
concerned with restoration of a single output image from a single 



 2

degraded observed image and the literature on the restoration of a single 
input frame is extensive and spans several decades [15, 16, 17, 33, 64, 80, 
83]. While the field of single frame image restoration appears to have 
matured, digital video has raised many new restoration problems for 
image processing researchers [125]. Since video typically consists of a 
sequence of similar, though not identical frames, it becomes possible to 
utilize the inter-frame motion information in processing the video data. 
This led to the development of image sequence processing techniques 
such as motion estimation [11, 39, 45, 94, 106, 108, 124, 125], image 
sequence interpolation [80], image registration [3, 6, 18] and standards 
conversion [125]. Image restoration researchers also recognized the 
potential of image restoration in increasing spatial resolution using the 
information totally contained in an image sequence as compared with that 
available from a single image. This led naturally to algorithms which 
apply motion compensation and image restoration techniques to produce 
high-quality and high-resolution still images from image sequences called 
Super-Resolution Reconstruction (SRR). 

SRR algorithms [9, 20, 57, 63, 95] investigate the relative 
motion information between multiple low-resolution (LR) images or a 
video sequence and increase the spatial resolution by fusing them into a 
single frame. In doing so, it also removes the effect of possible blurring 
and noise in the LR images. In summary, the SRR algorithm estimates an 
HR image with finer spectral details from multiple LR observations 
degraded by blur, noise, and aliasing. 

The major advantage of this approach is that the cost of 
implementation is reduced and the existing LR imaging systems can still 
be utilized. Thus, applications for the techniques of SRR from image 
sequences grow rapidly as the theory gains exposure. Continuing 
researches and the availability of fast computational machineries have 
made these methods increasingly attractive in applications requiring the 
highest restoration performance. SRR techniques have already been 
applied to problems in a number of applications such as satellite imaging, 
astronomical imaging, video enhancement and restoration, video 
standards conversion, confocal microscopy, digital mosaicing, aperture 
displacement cameras, medical computed tomographic imaging, 
diffraction tomography, video freeze frame and hard copy.  

In SRR, typically, the LR images represent different “looks” 
at the same scene [95]. That is, LR images are subsampled (aliased) as 
well as shifted with sub-pixel precision. If the LR images are shifted by 
integer units, then each image contains the same information, and thus 
there is no new information that can be used to reconstruct a HR image. If 
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the LR images have different sub-pixel shifts from each other and if 
aliasing is present, however, then each image cannot be obtained from the 
others. In this case, the new information contained in each LR image can 
be exploited to obtain a HR image. To obtain different looks at the same 
scene, some relative scene motions must exist from frame to frame via 
multiple scenes or video sequences. Multiple scenes can be obtained from 
one camera with several captures or from multiple cameras located in 
different positions. These scene motions can occur due to the controlled 
motions in imaging systems, e.g., images acquired from orbiting 
satellites. The same is true of uncontrolled motions, e.g., movement of 
local objects or vibrating imaging systems. If these scene motions are 
known or can be estimated within sub-pixel accuracy and if we combine 
these LR images then SRR is possible.  

Most of the SRR registration techniques [95] are based on 
the sub-pixel translation motion assumption. This implies the observed 
images or sequences can be modeled by global or local uniform 
translation thus the traditional sub-pixel registration can not be applied on 
the real complex motion sequences and super-resolution applications can 
be applied only on the sequences that have simple translation motion. In 
addition to image registration, the robust estimation and high accurate 
image estimation is also required. The traditional estimated techniques for 
SRR, proposed in the past literatures [9, 20, 57, 63, 94, 95] are based on 
the simple estimation techniques such as L1 Norm or L2 Norm 
Minimization. From these points of view, the SRR estimation technique 
and SRR sub-pixel registration for the real complex sequences is a very 
challenging topic because the performance of the registration and 
estimation techniques have a major impact on the performance of the 
SRR system.  

This dissertation has a main objective to jointly overcome 
the problems of SRR application limitation (for the real complex 
sequences) and SRR estimation technique. The results in the dissertation 
would be beneficial for SRR framework design, especially in the digital 
image/video restoration. 
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1.1.1 Introduction of Super-Resolution Reconstruction Algorithm 
(SRR) 

In this section, the fundamental knowledge of the SRR 
algorithm is described. This includes a block diagram of observation 
model and SRR algorithm. 

The first step to comprehensively review the SRR problem is 
to formulate an observation model that relates the original HR image to 
the observed LR images. Several observation models have been explored 
in [95], and they can be broadly divided into the models for still images 
and for video sequence. To present a basic concept of SR reconstruction 
techniques, we employ the observation model for still images in [95] as 
shown in Figure 1.1, since it is rather straightforward to extend the still 
image model to the video sequence model. 

- Translation
- Rotation
- etc

- Optical Blur
- Motion Blur
- Sensor PSF
- etc

Original
HR Image

Warping Blur

1Noise

Blur

Blur

Blur

Undersampling

Blur

Undersampling

Undersampling

Undersampling

+1Warping

2Warping

Warping p

3Warping

2Noise

+

3Noise

+

Noise p

+

1LR Image

2LR Image

3LR Image

LR Image p

Down Sampling

Figure 1.1: Block Diagram of Observation Model. 

The motion that occurs during the image acquisition is 
represented by warping processes. It may contain global or local 
translation, rotation, and so on. Since this information is generally 
unknown, we need to estimate the scene motion for each frame with 
reference to one particular frame. The warping process performed on HR 
image is actually defined in terms of LR pixel spacing when we estimate 
it. Thus, this step requires interpolation when the fractional unit of motion 
is not equal to the HR sensor grid. 
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Blur may be caused by an optical system (e.g., out of focus, 
diffraction limit, aberration, etc.), relative motion between the imaging 
system and the original scene, and the point spread function (PSF) of the 
LR sensor. It can be modeled as linear space invariant (LSI) or linear 
space variant (LSV). In single image restoration applications, the optical 
or motion blur is usually considered. In the SRR, however, the finiteness 
of a physical dimension in LR sensors is an important factor of blur.. In 
the use of SRR algorithms, the characteristics of the blur are assumed to 
be known. However, if it is difficult to obtain this information, blur 
identification should be incorporated into the reconstruction procedure. 

The downsampling process generates aliased LR images 
from the warped and blurred HR image. Although the size of LR images 
is the same here, in more general cases, we can address the different size 
of LR images by using a different downsampling matrix. Although the 
blur acts more or less as an anti-aliasing filter, in SR image 
reconstruction, it is assumed that aliasing is always present in LR images. 

Most of the explored SRR algorithms [95] consist of the 
three stages illustrated in Figure 1.2: registration, interpolation and 
restoration (i.e., inverse procedure). These steps can be implemented 
separately or simultaneously according to the reconstruction methods 
adopted. The estimation methods of motion information [11, 12, 39, 40, 
45, 74-78, 106, 108, 122] are referred to as registration methods [3, 6, 
18], and it is extensively studied in various fields of image processing. In 
the registration stage, the relative shifts between LR images compared to 
the reference LR image are estimated with fractional pixel accuracy. 
Obviously, accurate sub-pixel motion estimation is a very important 
factor in the success of the SRR algorithm. Since the shifts between LR 
images are arbitrary, the registered HR image will not always match up to 
a uniformly spaced HR grid. Thus, nonuniform interpolation is necessary 
to obtain a uniformly spaced HR image from a composite of 
nonuniformly spaced LR images. Finally, image restoration is applied to 
the upsampled image to remove blurring and noise. 

 

Registration
or

Motion Estimation

Interpolation
onto

HR Grid

Restoration
for Blur and Noise

Removal
Estimated SR Image

1LR Image

2LR Image

3LR Image

LR Image p

 

Figure 1.2: Super-Resolution Reconstruction (SRR) Block Diagram. 
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1.1.2 Literature Review 

As stated in the beginning of this chapter, this dissertation 
addresses two main problems of SRR: the insufficient accuracy of the 
sub-pixel image registration and the non-robust estimation technique used 
in the SSR. In this section, the relevant research papers, published in the 
conferences and journals are comprehensively reviewed.  

The Super-Resolution Reconstruction (SRR) idea was first 
presented by T. S. Huang and R. Y. Tsan [107] in 1984. They used the 
frequency domain approach to demonstrate the ability to reconstruct one 
improved resolution image from several downsampled noise-free 
versions of it, based on the spatial aliasing effect. Next, a frequency 
domain recursive algorithm for the restoration of super-resolution images 
from noisy and blurred measurements is proposed by S. P. Kim, N. K. 
Bose, and H. M. Valenzuela [102] in 1990. The algorithm using a 
weighted recursive least squares algorithm, is based on sequential 
estimation theory in the frequency-wavenumber domain, to achieve 
simultaneous improvement in signal-to-noise ratio and resolution from 
available registered sequence of low-resolution noisy frames. In 1993, S. 
P. Kim and Wen-Yu Su [103] also incorporated explicitly the deblurring 
computation into the high-resolution image reconstruction process 
because separate deblurring of input frames would introduce the 
undesirable phase and high wavenumber distortions in the DFT of those 
frames. Subsequently, M. K. Ng and N. K. Bose [62] proposed the 
analysis of the displacement errors on the convergence rate to the 
iterative approach for solving the transform based preconditioned system 
of equation in 2002 hence it is established that the used of the MAP, L2 
Norm or H1 Norm regularization functional leads to a proof of linear 
convergence of the conjugate gradient method in terms of the 
displacement errors caused by the imperfect subpixel locations. Later, N. 
K. Bose, M. K. Ng and A. C. Yau [69] proposed the fast SRR algorithm, 
using MAP with MRF for blurred observation in 2006. This algorithm 
uses the reconditioned conjugated gradient method and FFT. Although 
the frequency domain methods are intuitively simple and computationally 
cheap, the observation model is restricted to only global translational 
motion and LSI blur. Due to the lack of data correlation in the frequency 
domain, it is also difficult to apply the spatial domain a priori knowledge 
for regularization. 

The POCS formulation of the SRR was first suggested by 
Stark and Oskoui [95] in 1987. Their method was extended by Tekalp 
[95] to include observation noise in 1992. Although POCS is simple and 
can utilize a convenient inclusion of a priori information, this method has 
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the disadvantages of nonuniqueness of solution, slow convergence and a 
high computational cost. Next, A. J. Patti and Y. Altunbasak proposed [2] 
a SRR (Super-Resolution Reconstruction) using ML estimator with 
POCS-based regularization in 2001 and Y. Altunbasak, A. J. Patti, and R. 
M. Mersereau [126] proposed a Super-Resolution Reconstruction (SRR) 
for the MPEG sequences in 2002. They proposed a motion-compensated, 
transform-domain super-resolution procedure that directly incorporates 
the transform-domain quantization information by working with the 
compressed bit stream. Later, B. K. Gunturk and Y. Altunbasak and R. 
M. Mersereau [7] proposed a ML super-resolution with regularization 
based on compression quantization, additive noise and image prior 
information in 2004. Next, H. Hasegawa, T. Ono, I. Yamada and K. 
Sakaniwa proposed iterative SSR using the Adaptive Projected 
Subgradient method for MPEG sequences in 2005 [27]. 

The MRF or Markov/Gibbs Random Fields [35-38, 43-44, 
90-91] are proposed and developed for modeling image texture during 
1990-1994. Due to MRF (Markov Random Field) that can model the 
image characteristic especially on image texture, C. Bouman and K. 
Sauer [10] proposed the single image restoration algorithm using MAP 
estimator with the GGMRF (Generalized Gaussian-Markov Random 
Field) prior in 1993. Later, R. L. Stevenson, B. E. Schmitz and E. J. Delp 
[82] proposed the single image restoration algorithm using ML estimator 
with the Discontinuity Persevering Regularization in 1994. R. R. Schultz 
and R. L. Stevenson [88] proposed the single image restoration algorithm 
using MAP estimator with the HMRF (Huber-Markov Random Field) 
prior in 1994. Next, the Super-Resolution Reconstruction algorithm using 
MAP estimator (or the Regularized ML estimator), with the HMRF prior 
was proposed by R. R. Schultz and R. L. Stevenson [89] in 1996. The 
blur of the measured images is assumed to be simple averaging and the 
measurements additive noise is assumed to be independent and 
identically distributed (i.i.d.) Gaussian vector. In 2006, R. Pan and S. J. 
Reeves [87] proposed single image MAP estimator restoration algorithm 
with the efficient HMRF prior using decomposition-enabled edge-
preserving image restoration in order to reduce the computational 
demand. 

Typically, the regularized ML estimation (or MAP) [15, 16, 
24, 64] is used in image restoration therefore the determination of the 
regularization parameter is an important issue in the image restoration. A. 
M. Thompson, J. C. Brown, J. W. Kay and D. M. Titterington [1] 
proposed the Methods of choosing the smoothing parameter in image 
restoration by regularized ML in 1991. Next, V. Z. Mesarovic, N. P. 
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Galatsanos, A. K. Katsaggelos [123] proposed the single image 
restoration using regularized ML for unknown linear space-invariant 
(LSI) point spread function (PSF) in 1995. Subsequently, D. Geman and 
C. Yang [14] proposed single image restoration using regularized ML 
with robust nonlinear regularization in 1995. This approach can be done 
efficiently by Monte Carlo Methods, for example by annealing FFT 
domain using Markov chain that alternates between (global) transitions 
from one array to the other. Later, M. G. Kang and A. K. Katsaggelos 
proposed the use of a single image regularization functional [55], which 
is defined in terms of restored image at each iteration step, instead of a 
constant regularization parameter in 1995 and proposed regularized ML 
for SRR [56], in which no prior knowledge of the noise variance at each 
frame or the degree of smoothness of the original image is required in 
1997. In 1999, R. Molina, A. K. Katsaggelos, and J. Mateos [85] 
proposed the application of the hierarchical ML with Laplacian 
regularization to the single image restoration problem and derived 
expressions for the iterative evaluation of the two hyperparameters 
(regularized parameter) applying the evidence and maximum a posteriori 
(MAP) analysis within the hierarchical regularized ML paradigm. In 
2003, R. Molina, M. Vega, J. Abad and A. K. Katsaggelos [86] proposed 
the mutiframe super-resolution reconstruction using ML with Laplacian 
regularization. The regularized parameter is defined in terms of restored 
image at each iteration step. Next, D. Rajan and S. Chaudhuri [21] 
proposed super-resolution approach, based on ML with MRF 
regularization, to simultaneously estimate the depth map and the focused 
image of a scene, both at a super-resolution from its defocused observed 
images in 2003. Subsequently, H. He and L. P. Kondi [29-30] proposed 
image resolution enhancement with adaptively weighted low-resolution 
images (channels) and simultaneous estimation of the regularization 
parameter in 2004 and proposed a generalized framework [31] of 
regularized image/video Iterative Blind Deconvolution/Super-Resolution 
(IBD-SR) algorithm using some information from the more matured blind 
Deconvolution techniques form image restoration in 2005. Later, they 
[32] proposed SRR algorithm that takes into account inaccurate estimates 
of the registration parameters and the point spread function in 2006. In 
2006, M. Vega, R. Molina and A. K. Katsaggelos [67] proposed the 
problem of deconvolving color images observed with a single coupled 
charged device (CCD) from the super-resolution point of view. Utilizing 
the regularized ML paradigm, an estimate of the reconstructed image and 
the model parameters is generated. 

M. Elad and A. Feuer [49] proposed the hybrid method 
combining the ML and nonellipsoid constraints for the super-resolution 
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restoration in 1997 and the adaptive filtering approach for the Super-
Resolution Reconstruction in 1999 [50, 51]. Next, they proposed two 
iterative algorithms, the R-SD and the R-LMS [51], to generate the 
desired image sequence at the practically computational complexity in 
1999. These algorithms assume the knowledge of the blur, the down-
sampling, the sequences motion, and the measurements noise 
characteristics, and apply a sequential reconstruction process. 
Subsequently, the special case of Super-Resolution Reconstruction 
(where the warps are pure translations, the blur is space invariant and the 
same for all the images and the noise is white) are proposed for a fast 
Super-Resolution Reconstruction in 2001 [52]. Later, N. Nguyen, P. 
Milanfar and G. Golub [70] proposed fast SRR algorithm using 
regularized ML by using efficient block circulant preconditioners and the 
conjugate gradient method in 2001. In 2002, M. Elad [54] proposed the 
Bilateral Filter theory, showed how the bilateral filter can be improved 
and extended to treat more general reconstruction problems. 
Consequently, the alternate super-resolution approach, L1 Norm 
estimator and robust regularization based on a Bilateral Total Variance 
(BTV), was presented by S. Farsiu and D. Robinson [97-98] in 2004. This 
approach performance is superior to what proposed earlier in [49], [50] 
and [51] and this approach has fast convergence but this SRR algorithm 
effectively apply only on AWGN models. Next, they proposed a fast SRR 
of color images [99] using ML estimator with BTV regularization for 
luminance component and Tikhonov regularization for chrominance 
component in 2006. Subsequently, they proposed the dynamic super-
resolution problem of reconstructing a high-quality set of monochromatic 
or color super-resolved images from low-quality monochromatic, color or 
mosaiced frames [100]. This approach includes a joint method for 
simultaneous SR, deblurring and Demosaicing. It takes into account 
practical color measurements encountered in video sequences. Later, we 
[112] proposed the SRR using a regularized ML estimator with affine 
block-based registration for the real image sequence. Moreover, G. 
Rochefort, F. Champagnat, G. L. Besnerais and Jean-Francois 
Giovannelli [25] proposed super-resolution approach based on 
regularized ML [49] for the extended original observation model devoted 
to the case of nonisometirc interframe motion such as affine motion in 
2006. 

S. Baker and T. Kanade [92] proposed another super-
resolution algorithm (hallucination or recognition-based super-resolution) 
in 2002 that attempts to recognize local features in the low-resolution 
image and then enhances their resolution in an appropriate manner. Due 
to the training data base, therefore, this algorithm performance depends 
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on the image type (such as face or character) and this algorithm is not 
robust enough to be sued in typical surveillance video. J. Sun, N. N. 
Zheng, H. Tao and H. Y. Shum [41] proposed hallucination super-
resolution (for single image) using regularization ML with primal 
sketches as the basic recognition elements in 2003. 

During 2004 to 2006, P. Vandewalle, S. Susstrunk and M. 
Vetterli [75-78] have proposed a fast super-resolution reconstruction 
based on a non-uniform interpolation using a frequency domain 
registration. This method has low computation and can use in the real-
time system but the degradation models are limited therefore this 
algorithm can apply on few applications. In 2006, M. Trimeche, R. C. 
Bilcu and J. Yrjanainen [65] proposed SRR algorithm using an integrated 
adaptive filtering method to reject the outlier image regions for which 
registration has failed. 

 

1.1.3 Insufficient Sub-Pixel Registration Accuracy Problem 

All the above Super-Resolution Reconstruction methods [2, 
8, 20, 21, 41, 49-53, 75-78, 88-89, 92, 95-100, 102, 103, 107, 126] are 
restricted to globally or locally uniform translational displacement 
between the measured images or sequences. This implies the measured 
images or sequences are observed at a high temporal frequency sampling 
(or high frame rate) but the measured images or sequences are usually 
observed by the real commercial cameras at low temporal frequency 
sampling (or low frame rate) such as standard sequences (Foreman, 
Carphone, Susie, etc.). The measured images or sequences have many 
complex motions instead of translational motion therefore, unfortunately, 
the pure translation model can not represent the real complex motion 
effectively and image super-resolution applications can apply only on the 
sequences that have simple translation motion as shown in these previous 
literature review. 

 

1.1.4 SSR Estimation Technique Problem 

This section reviews the literature from the estimation point 
of view because the SRR estimation is one of the most crucial parts of the 
SRR research areas and directly impact to the SRR performance. Though 
the SRR algorithms from the reviews literature use various techniques, 
there are only two kinds of norm estimation (L1 and L2). L2 norm 
estimation has the advantage of lower variance than the L1 norm; 
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whereas, L1 performs better in robust to outliers because the influence 
function is constant and bounded. 

C. Bouman and K. Sauer [10] proposed the single image 
restoration algorithm using ML estimator (L2 Norm) with the GGMRF 
(Generalized Gaussian-Markov Random Field) regularization in 1993. R. 
R. Schultz and R. L. Stevenson [88] proposed the single image restoration 
algorithm using ML estimator (L2 Norm) with the HMRF (Huber-
Markov Random Field) regularization in 1994 and proposed the SRR 
algorithm [89] using ML estimator (L2 Norm) with the HMRF 
regularization in 1996. The blur of the measured images is assumed to be 
simple averaging and the measurements additive noise is assumed to be 
independent and identically distributed (i.i.d.) Gaussian vector. M. Elad 
and A. Feuer [49] proposed the hybrid method combining the ML 
estimator (L2 Norm) and nonellipsoid constraints for the Super-
Resolution Reconstruction in 1997 [50]. Next, they proposed two 
iterative algorithms, the R-SD and the R-LMS (L2 Norm) [50, 53], to 
generate the desired image sequence at the practically computational 
complexity in 1999. These algorithms assume the knowledge of the blur, 
the down-sampling, the sequences motion, and the measurements noise 
characteristics, and apply a sequential reconstruction process. 
Subsequently, the special case of Super-Resolution Reconstruction 
(where the warps are pure translations, the blur is space invariant and the 
same for all the images and the noise is white) are proposed for a fast 
Super-Resolution Reconstruction using ML estimator (L2 Norm) in 2001 
[52]. Later, N. Nguyen, P. Milanfar and G. Golub [70] proposed fast SRR 
algorithm using regularized ML (L2 Norm) by using efficient block 
circulant preconditioners and the conjugate gradient method in 2001. In 
2002, A. J. Patti and Y. Altunbasak proposed [2] a SRR algorithm using 
ML (L2 Norm) estimator with POCS-based regularization. Y. 
Altunbasak, A. J. Patti, and R. M. Mersereau [126] proposed a SRR 
algorithm using ML (L2 Norm) estimator for the MPEG sequences in 
2002. Deepu Rajan and S. Chaudhuri [21] proposed SRR using ML (L2 
Norm) with MRF regularization to simultaneously estimate the depth 
map and the focused image of a scene in 2003. Later, we [112] proposed 
the SRR using a regularized ML estimator (L2 Norm) with affine block-
based registration for the real image sequence. Moreover, G. Rochefort, 
F. Champagnat, G. L. Besnerais and Jean-Francois Giovannelli [25] 
proposed super-resolution approach based on regularized ML (L2 Norm) 
[49] for the extended original observation model devoted to the case of 
nonisometirc interframe motion such as affine motion in 2006. In 2006, 
R. Pan and S. J. Reeves [87] proposed single image restoration algorithm 
using ML estimator (L2 Norm) with the efficient HMRF regularization 
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and using decomposition-enabled edge-preserving image restoration in 
order to reduce the computational demand. 

The novel super-resolution approach, ML estimator (L1 
Norm) and robust regularization based on a Bilateral Total Variance 
(BTV), was presented by S. Farsiu and D. Robinson [97-98] in 2004. 
Next, they proposed a fast SRR of color images [99] using ML estimator 
(L1 Norm) with BTV regularization for luminance component and 
Tikhonov regularization for chrominance component in 2006. 
Subsequently, they proposed the dynamic super-resolution problem of 
reconstructing a high-quality set of monochromatic or color super-
resolved images from low-quality monochromatic, color or mosaiced 
frames [100]. This approach includes a joint method for simultaneous SR, 
deblurring and Demosaicing, this way taking into account practical color 
measurements encountered in video sequences.  

The success of SRR algorithm is highly dependent on the 
accuracy of the model of the imaging process. However, these models are 
not supposed to be exactly true, as they are merely mathematically 
convenient formulations of some general prior information. When the 
data or noise model assumptions do not faithfully describe the measure 
data, the estimator performance degrades rapidly. Furthermore, existence 
of outliers defined as data points with different distributional 
characteristics than the assumed model will produce erroneous estimates. 
Most of noise models used in SRR algorithms is based on AWGN 
(Additive White Gaussian Noise) model; therefore, SRR algorithms can 
effectively apply only on the image sequence that is corrupted by 
AWGN. Due to this noise model, L1 norm or L2 norm error are 
effectively used in SRR algorithm. Unfortunately, the real noise models 
that corrupt the measure sequence are unknown therefore SRR algorithm 
using L1 norm or L2 norm may degrade the image sequence rather than 
enhance it. Therefore, the robust norm error is desired for SRR algorithm. 
This norm should be strong against several noise models. For normally 
distributed data, the L1 norm produces estimates with higher variance 
than the optimal L2 (quadratic) norm but the L2 norm is very sensitive to 
outliers because the influence function increases linearly and without 
bound.  
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1.2 Objectives of the Dissertation 

This dissertation proposes a novel SRR (Super-Resolution 
Reconstruction) framework for real standard sequences that are corrupted 
by any noise models. The proposed sub-pixel image registration is 
designed to overcome the insufficient temporal sampling frequency and 
to register the real complex motion sequence that the traditional SSR 
registration can not support. To realize the implementation of the 
proposed sub-pixel image registration, the fast algorithm is designed to 
reduce the computational load for the proposed sub-pixel registration. 
Moreover, the novel robust estimation technique is proposed for SSR 
framework to increase the estimated performance and to be robust against 
several types of noise models. 
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1.3 The Proposed Technique and its Novelty 

This dissertation proposes two novel algorithms: the highly 
accurate sub-pixel image registration and the robust norm for SRR 
algorithm. The proposed registration assumes the affine motion as the 
relationship between blocked images (the current frame and the reference 
frame). It is applicable to not only the standard sequences but also real 
sequences with complex motion. Therefore, it can be implemented in the 
previous SRR algorithms. Moreover, it can be implemented in motion 
estimation algorithm. To realize the implementation of the proposed sub-
pixel image registration, the fast algorithm is designed to reduce the 
computational load for the proposed sub-pixel registration. This 
dissertation considers the use of a regularized maximum likelihood 
estimator in the image estimation process due to its high performance and 
low complexity [2, 10, 21, 25, 49-53, 70, 87-89, 97-100, 112, 126]. This 
dissertation also studies the effect of norm estimation in SRR algorithm. 
The L1 or L2 norms with different regularized functions are interested in 
this work. A novel robust norm is proposed into the model of the SRR 
framework using the proposed registration.  

A block diagram of the proposed iterative SSR framework is 
illustrated in Figure 1.3. The proposed SSR framework is the iterative 
process composed of 2 main parts: the registration parameter estimation 
and image estimation. First, the registration parameters, which used to 
wrap all low resolution images and used in the image estimation process 
are estimated from low resolution images (or observed sequences) and the 
registration parameters. Second, all LR images, all degraded SR images, 
all registration information, regularized information and initialed SR 
image are used in the image estimation process to generate the estimated 
SR image. 
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Figure 1.3: Proposed Super-Resolution Reconstruction Framework 
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1.4 Scope of the Dissertation 

The research problems are the insufficient registration 
accuracy and the problem of image estimation techniques. The scope of 
these researches is as follows. 

1. Study the performance and the limitation of the classical image 

registration applied in the SRR algorithm. 

2. Develop the image sequence registration that is applicable to both 

the real complex sequences and standard sequences. 

3. Study the performance of the proposed registration and provide a 

comparative study of proposed registration with other traditional 

registration proposed previously. 

4. Provide mathematical analyses of the SRR algorithm using 

maximum likelihood (ML) with different regularized function such 

Tikhonov, MRF (Markov Random Field) and BTV (Bi-Total 

Variance). 

5. Study the performance of the SRR using the proposed registration. 

6. Develop the image estimation technique that is more accurate and 

robust than the existing image estimation techniques used in SRR 

framework. 

7. Provide mathematical analyses of the SRR algorithm using 

proposed robust estimation technique. 

8. Study the performance of the proposed image estimation technique 

and provide a comparative study of proposed estimation with other 

classical estimation technique (L1 and L2) proposed by previously. 

9. Develop the SRR framework using the proposed registration and 

proposed estimation technique 
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10. Study the performance of the SRR using the proposed registration 

and proposed estimation technique and provide a comparative 

study of proposed estimation with other estimation proposed by 

many authors in the past. 
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1.5 Expected Prospects of the Dissertation 

1. Acquire a basic knowledge of mathematical formulation models for 

solving the SRR problems. 

2. Obtain a new registration algorithm to jointly overcome the 

insufficient registration accuracy; thereby, enhance the overall 

system performance. Thus, the SRR with the proposed registration 

algorithm is expected to be able to implement in the real image 

sequence. 

3. Obtain a new estimation technique for the proposed SRR so that 

the SRR using the proposed estimation technique is robust to any 

noise models and to registration error. 

4. Obtain the SRR using the proposed registration and the proposed 

estimation technique. Hence, the proposed SRR can be applied on 

real image sequence that is corrupted by any noise model. 

5. Know the advantages and disadvantages of proposed SRR 

registration algorithm. 

6. Know the advantages and disadvantages of proposed SRR 

estimation. 

7. Know the advantages and disadvantages of the proposed SRR 

registration and the proposed SRR estimation techniques. 

8. Understand the necessity of the registration and estimation 

techniques for SRR framework. 
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1.6 The Dissertation Procedure 

1. Study previous research papers relevant to the research works of 

the dissertation. 

1.1 Study research papers relevant to the sub-pixel motion 

estimation/registration problem. 

1.2 Study research papers concerning with the robust 

estimation problem. 

1.3 Study research papers regarding the SRR. 

2. Develop the highly accurate sub-pixel motion 

estimation/registration algorithm for the SRR (Super-Resolution 

Reconstruction).  

3. Develop the sub-pixel motion estimation/registration simulation 

program. 

4. Test the proposed registration algorithm by using several standard 

sequences such as Foreman, Carphone, Suzie and Stefan that have 

different moving foreground and background characteristics. 

5. Develop the mathematical model for the super-resolution 

reconstruction using the proposed sub-pixel registration. 

6. Develop the SRR simulation program using the proposed sub-pixel 

registration. 

7. Test the SRR algorithm by using the proposed registration 

algorithm in several standard sequences. 

8. Develop mathematical model for a robust estimation for the SRR 

using the proposed registration. 

9. Develop the SRR simulation program using the proposed robust 

estimation. 
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10. Test the SRR using the proposed robust estimation by several 

standard images. 

11. Develop mathematical model of the SRR using the proposed 

registration and the proposed robust estimation. 

12. Develop the SRR simulation program using the proposed 

registration and the proposed robust estimation. 

13. Test the SRR using the proposed robust estimation and the 

proposed robust estimation by several standard sequences. 

14. Collect and analyze computational results obtained from simulation 

programs. 

15. Summarize the major findings as we found in step 14 and conclude 

the performance of the proposed SRR framework in all concerned 

aspects. 

16. Check whether the conclusions meet all the objectives of the 

research work of the dissertation. 

17. Write the dissertation. 
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1.7 Dissertation Outline 

Chapter 2 provides a concise introduction to the theory and 
application of fundamental techniques for SRR (Super-Resolution 
Reconstruction). Next, Chapter 3 describes the proposed SRR registration 
and the proposed SRR estimation. In chapter 4, system configurations and 
experimental results are elaborated. In addition, performance comparison 
between the proposed registration/estimation and the classical method is 
comprehensively demonstrated in this chapter. Finally, Chapter 5 
discusses and concludes all experimental results. Contributions and 
suggestions of future works on SRR are given in this chapter. 
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CHAPTER II 
FUNDAMENTAL TECHIQUES 

FOR SUPER-RESOLUTION RECONSTRUCTION 

2.1 Introduction of SRR (Super-Resolution Reconstruction) 

In this chapter, some of the background knowledge 
necessary for understanding and exploring the SRR (Super-Resolution 
Reconstruction) problem is presented.  

Traditionally, the achievable resolution of any devices is 
constrained by both theoretical and practical (physical) limitations. SRR 
(Super-Resolution Reconstruction) algorithms investigate the relative 
motion information between multiple LR (Low Resolution) images (or a 
video sequence) and increase the spatial resolution by fusing them into a 
single frame. In doing so, it also removes the effect of possible blurring 
and noise in the LR images [9, 15-16, 20, 24, 57, 63, 94-95]. Recent work 
relates this problem to restoration theory [24, 64]. As such, the problem is 
shown to be an inverse problem, where an unknown image is to be 
reconstructed, based on measurements related to it through linear 
operators and additive noise. This linear relation is composed of 
geometric warp, blur and decimation operations. The SRR problem is 
modeled by using sparse matrices and analyzed from many reconstruction 
methods [63] such as the Non-uniform Interpolation, Frequency Domain, 
Maximum-Likelihood (ML), Maximum A-Posteriori (MAP), and 
Projection Onto Convex Sets (POCS).  

Though the terminology varies considerably from field to 
field, SRR is broadly understood as a bandwidth extrapolation beyond the 
diffraction limit of the optical system. Though the use of the diffraction 
limit as the threshold defining SRR is common, it is often inappropriate 
in electronic imaging applications. SRR thus requires not only the 
amelioration of the degradations caused in the imaging process (the 
classical restoration problem), but also the extrapolation of frequency 
content beyond that which is present in the observed data. SRR requires 
the restoration of lost information or SRR refers to the restoration of a 
sequence of images that has information content beyond the spatial and/or 
temporal bandlimit of the imaging system (bandwidth extrapolation). 

In Section 2.2, the theory of inverse problems that will play 
an important role in the chapters ahead is introduced. Next, Section 2.3 
demonstrated the classical SRR algorithm. In Section 2.3, classical SRR 
registration/estimation is presented. Later, SRR estimation is presented in 
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Section 2.4. Finally, in Section 2.5, the typical SRR regularization 
techniques are discussed. 
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2.2 Inverse Problems 

In this section, a succinct overview of some basic concepts 
in mathematical inverse problems is provided. The discussion here is 
nontechnical so that the reader may obtain an intuitive comprehension of 
the fundamental ideas prior to the presentation of greater detail in 
subsequent chapters. 

2.2.1 Definition of an Inverse Problem 

The inverse problem can be defined as follows [93]: 

“We call two problems inverses of one another if the 
formulation of each involves all or part of the solution of the other. Often, 
for historical reasons, one of the two problems has been studied 
extensively for some time, while the other has never been studied and is 
not so well understood. In such cases, the former is called the direct 
problem, while the latter is the inverse problem.”  

This description hints at the arbitrariness of the definition as 
to which problem is considered direct and which is the inverse. 
Considering the following classical examples clarified the terminology. 
The familiar example of a direct/inverse problem pair concerns 
polynomials. Given a polynomial of order p the direct problem is finding 
the p roots of the polynomial. The corresponding inverse problem is 
finding the polynomial given the p roots. In the case of polynomials it is 
clear that the direct problem is more difficult. 

The above example illustrates another typical characteristic 
of direct/inverse problem pairs. The data for the direct problem is the 
desired solution of inverse problem and vice versa. 

2.2.2 Well-Posed and Ill-Pose Problems 

Hadamard [93], in his work on differential equations, 
classified a problem as “well-posed” if the solution to the problem has the 
following characteristic: 

1. Solution Existence: The solution of the problem or model 
must existence. There may be no model that exactly fits the data and 
therefore no solution does exits for the approximated model. This can 
occur in practice because our mathematical model of the system’s physics 
is approximated or because the data contain noise. 
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2. Solution Uniqueness: If the solution of the problem or 
model is existence then the solution must be uniqueness. For some 
models, though exact solutions do exits, they may not be unique, even for 
an infinite number of exact data points. Nonunique solution is a 
characteristic of rank-deficient discrete linear inverse problems. 

3. Stability of the Solution Process (Continuous Dependence 
of the Data): The solution of the problem must depend on the data. The 
process of computing an inverse solution can be, and often is, extremely 
unstable in that a small change in measured/observed data can lead to an 
enormous change in the estimated model. 

In contrast, a problem which fails to satisfy any of the 
Hadamard conditions is said to be “ill-posed”. SRR is considered ill-
posed due to the following reason: 1) No solution existence, 2) Solution 
Non-Uniqueness, 3) Instability of the Solution Process. 

In fact, the information always losses due to the observation 
process therefore the information content of the solution is lower than 
that of the original information. This irrecoverable loss of information 
does not present significant difficulties for the direct problem. However, 
if the objective is to determine the original information from the observed 
information, that is, to solve the inverse problem, this information loss 
has serious consequences. It is not possible to reverse the process exactly 
and return to the original information due to the loss of information. The 
inverse problem fails to have a unique solution. 

2.2.3 Regularization Technique and the Solution to Ill-Posed 
Problems 

Regularization is a term which refers to methods which 
utilize additional information to compensate for the information loss 
which characterizes ill-posed problems. This additional information is 
typically referred to as a-priori or prior information as it cannot be 
derived from the observations or the observation process and must be 
known “before the fact”. Typically the prior information is chosen to 
represent desired characteristics of the solution, for example total energy, 
smoothness, positivity and so on. The role of the a-priori information is to 
constrain or reduce the space of solutions which are compatible with the 
observed data. A deterministic theory of regularized solutions to ill-posed 
problems was pioneered by A. N. Tikhonov [93]. 

In the Tikhonov approach, a family of approximate solutions 
to the inverse problem is constructed, with the family of solutions 
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controlled by a nonnegative real-valued regularization parameter. The 
solution family is constructed so that in the noise-free case, in the limit as 
the regularization parameter goes to zero, the exact solution to the 
original problem is yielded, while for noisy data, a positive value of the 
regularization parameter yields an optimal approximate solution. Since 
Tikhonov's seminal work, stochastic and set-theoretic regularization 
theories have been proposed. Stochastic regularization methods are 
applied in later chapters. In all these regularization frameworks, the 
inclusion of a-priori information results, by construction, in a new well-
posed problem which is closely related to the original ill-posed one. This 
well-posed problem, the solution of which satisfies the Hadamard 
requirements, is formulated so that its unique solution is meaningful with 
respect to the original ill-posed one. It is therefore very important to 
ensure that the a-priori constraints used accurately reflect the required 
characteristics of the solution. Often physical principles are a useful 
guide. For instance, in an imaging application, light intensities are always 
nonnegative - a powerful a-priori constraint in bandlimited reconstruction 
scenarios. 

2.2.4 Super-Resolution Reconstruction as an Ill-Posed Inverse 
Problem 

One of the recurring issues in this work is that multiframe 
Super-Resolution Reconstruction is usually an ill-posed inverse problem. 

2.2.4.1 Super-Resolution Reconstruction is an Inverse Problem 

SRR refers to the restoration of a sequence of observed low-
resolution images that has information content beyond the spatial and/or 
temporal bandlimit of the imaging system (bandwidth extrapolation). 
Hence, the corresponding inverse problem is that of determining 
estimate(s) of the scene given the observed image sequence and the 
characterization of the imaging process. Given the characteristics of the 
imaging process and system, the forward problem is the simulation, while 
the inverse problem is the restoration. 

2.2.4.2 Super-Resolution Reconstruction is an Ill-Posed Problem 

Recall that ill-posedness implies failure of one or more of 
the Hadamard conditions. The multiframe SRR problem may fail to 
satisfy one or more of these conditions. The failure may result from either 
the characteristics of the imaging system, or the observed data.  

1. Nonexistence of the solution: the presence of noise in the 
observation process may result in an observed image sequence which, 
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given the imaging system characterization, is inconsistent with any scene. 
The result is that the system is noninvertible and the scene cannot be 
estimated from the observations. 

2. Nonuniqueness of the solution: when the operator which 
characterizes the imaging process is many-to-one, there exists a nontrivial 
space of solutions consistent with any given observed image sequence, 
that is, the solution to the inverse problem is nonunique. For example, in 
bandlimited imaging systems, all out-of-band scene data represent the 
null space of the imaging process operator. Even if the imaging operator 
is nonsingular, a simple lack of data, which represent constraints on the 
solution space, is sufficient to result in the nonuniqueness of the solution. 
For example, consider a discretized imaging scenario with P observed 
low-resolution images each consisting of N pixels. These observed data 
provide a maximum of PN independent constraints. Assume a single 
superresolution image containing M > PN pixels is to be estimated from 
the data. Since the number of unknowns exceeds the number of 
constraints, it is clear that there are insufficient constraints for the 
existence of a unique solution to the inverse problem. Furthermore, since 
superresolution, by definition, requires the restoration of information that 
is lost in the imaging process it should be expected that the solution to the 
superresolution restoration problem is likely to be nonunique. 

3. Discontinuous dependence of the solution on the data: 
depending on the characteristics of the imaging system, the inverse 
problem may be highly sensitive to perturbations of the data. For 
example, consider an imaging system with a spectral response which 
decreases asymptotically toward zero with increasing frequency. While 
such a system is invertible in theory, in practice the inverse is unstable. 
An arbitrarily small noise component at a sufficiently high frequency 
leads to an arbitrarily large spurious signal in the computed restoration. In 
practice such restorations are typically overwhelmed by the amplification 
of the noise. 

While, in rare circumstances, it happens that the Hadamard 
conditions are satisfied, in general, practical applications involving 
multiframe SRR are invariably ill-posed. 

Despite the difficulties caused by the ill-posedness, 
regularized solution methods enable high quality SRR as is shown in later 
section. The inclusion of a-priori information is crucial to achieving this. 
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2.3 The Classical SRR Algorithm 

In this section, the classical SRR algorithm is presented. 
First, the SRR observation model is described and, consequently, the 
classical regularized ML for the SRR algorithm is stated. 

 

2.3.1 The SRR Observation Model 

The first step to comprehensively analyze the SRR problem 
is to formulate an observation model that relates the original HR image to 
the observed LR images. The observation models can be broadly divided 
into the models for still images and for video sequence. To present a basic 
concept of SRR algorithms, we first employ the observation model for 
still images and, later, we extend it to the observation model for the video 
sequence model. 

Define that a low-resolution image sequence is { }kY , 1 2N N×  
pixels, as our measured data. A original high-resolution image X , 

1 2qN qN×  pixels, is to be estimated from the LR sequences, where q  is an 
integer-valued interpolation factor in both the horizontal and vertical 
directions. To reduce the computational complexity, each frame is 
separated into overlapping blocks (the shadow blocks as shown in Fig. 
2.1(a) and Fig. 2.1(b)). 

For convenience of notation, all overlapping blocked frames 
will be presented as vector, ordered column-wise lexicographically. 
Namely, the overlapping blocked LR frame is 2M

kY ∈\  ( 2 1M × ) and the 
overlapping blocked HR frame is 2 2q MX ∈\  ( 2 2 21 or 1L q M× × ). We assume 
that the two images are related via the following equation 

; 1, 2, ,k k k k kY D H F X V k N= + = …    (2.1) 

where 

 X  (vector format) is the original high-resolution blocked image. 

 ( )kY t  (vector format) is the blurred, decimated, down sampled and 
noisy blocked image 

 kF   ( 2 2 2 2q M q MF ×∈\  and matrix format) stands for the geometric warp 
(Typically, Translational Motion) between the images X  and kY . 
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 kH  ( 2 2 2 2q M q M
kH

×∈\  and matrix format)is the blur matrix which is a 
space and time invariant. 

 kD  ( 2 2 2M q M
kD

×∈\  and matrix format) is the decimation matrix 
assumed constant. 

 kV  ( 2M
kV ∈\  and vector) is a system noise. 

 

1qN
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X

1Y 2Y NY

X

{ }kY
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( )a High-Resolution Image

( )b Low-Resolution Image Sequence

X
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L
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M
Degradation

Process
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Figure 2.1 The Classical SRR Observation Model 
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2.3.2 The Classical Regularized ML for SRR Algorithm 

A popular family of estimators is the ML-type estimators (M 
estimators) [50, 70]. We rewrite the definition of these estimators in the 
super resolution reconstruction framework as the following minimization 
problem: 

( )
1

ˆ ArgMin
N

k k k k
X k

X D H F X Yρ
=

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑     (2.2) 

where ( )ρ ⋅  is a norm estimation. To minimize (2.2), the 
intensity at each pixel of the expected image must be close to those of  
the original image. 
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2.4 Registration (Motion Estimation) for SRR Algorithm  

This section briefly reviews only the existing practical 
registration algorithms that are used in the SRR algorithm. The SRR 
registration can be classified into two groups: the global region 
registration and the local region registration. 

2.4.1 Global Registration for SRR Algorithm [109, 112] 

Without loss of generality, the registration will assume that 
the camera is stationary and the object is undergoing a rigid motion then 
the global region motion estimation calculates a motion vector that can 
represent the entity image. This estimation uses only one MV (Motion 
Vector) to describe all motion in the image hence it can not describe the 
image having a several movement objects effectively. 

1. The Translation Motion Estimation [42, 125] : The 
translation model, the simplest model, has two motion parameters ( a   and  
b ) as shown in the following equation and this model can describe only a 
rigid 3-D translation therefore its motion parameters are readily estimated 
but it cannot represent a real complex motion. 

( , )xv x y a=  and ( , )yv x y b=      (2.3) 

where ( , )xv x y  and ( , )yv x y  represent the motion of pixel (x,y) 
in x and y direction, respectively. 

2. The Affine Motion Estimation [25, 42, 125] : The affine 
model, one of the most implemented model, has six motion parameters 
( a , b , c , d , e  and f ) as shown in the following equation. This model 
can describe the projected 2-D model of most camera motions and a patch 
undergoing arbitrary 3-D rigid motion but it cannot capture either the 
chirping or converging effect of the projection mapping. 

( , )xv x y ax by c= + +  and ( , )yv x y dx ey f= + +   (2.4) 

3. The Bilinear Motion Estimation [42, 125] : The bilinear 
motion model has eight motion parameters (a , b , c , d , e , f , g  and  h ) 
and is more effective than the translation and affine model because this 
model can represent a perspective mapping but the estimation of the 
motion vector is dificult. Moreover, the computation cost is considerably 
high. 

( , )xv x y ax by cxy d= + + +  and ( , )yv x y ex fy gxy h= + + +  (2.5) 
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There are other complex motion models, even though these 
models have accuracy, computational cost are too high to implement 
therefore other complex motion models are rarely implemented. 

2.4.2 Regional Registration for SRR Algorithm [109, 112] 

This estimation separates the image plane into small regions 
and estimates the MV of each region, thus, this estimation can well 
represent the image that consists of a several moving objects. 

1. The Block-Based Motion Estimation [109, 125] : The 
block-based motion estimation, the most ubiquitous estimation, divides 
the image into non-overlapping blocks and estimates the translation 
motion vector of each block. This method is simple to implement in both 
the dividing process and estimation process and is used in standard 
codecs. It has the drawback of giving a severe artifact error to the 
compensated image. 

2. The Object-Based Motion Estimation [109, 125] : The 
object-based motion estimation divides the image into non-overlapping 
objects and estimates the motion vector of each object by using 
translation, affine or high complex motion model. Theoretically, the 
object-based motion estimation has the highest accuracy. However, it 
assumes the accurate object segmentation which does not exit and is still 
under researched. Therefore, this estimation method is still impractical. 
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2.5 Estimation Technique for SRR Algorithm 

Typically, many available estimators that estimate a HR 
image from a set of noisy LR images are not exclusively based on the LR 
measurement. They are also based on many assumptions such as noise or 
motion models and these models are not supposed to be exactly true, as 
they are merely mathematically convenient formulations of some general 
prior information. When the fundamental assumptions of data and noise 
models do not faithfully describe the measured data, the estimator 
performance degrades. Moreover, existence of outliers defined as data 
points with different distributional characteristics than the assumed model 
will produce erroneous estimates. Estimators promising optimality for a 
limited class of data and noise models may not be the most effective 
overall approach. Often, suboptimal estimation methods that are not as 
sensitive to modeling and data errors may produce better and more stable 
results (robustness). 

 

2.5.1 L2 Norm Estimation for SRR Algorithm 

The first popular family of estimators is the L2 Norm 
estimators that are used in super resolution problem [49-53, 88-89]. The 
definition of these estimators in the super resolution context is the 
following minimization problem: 

( )2

1
ArgMin

N

kk k k
X k

X D H F X Y
=

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑     (2.6) 

The L2 norm produces estimator with lower variance than 
the optimal L1 norm but the L2 norm is very sensitive to outliers because 
the influence function increases linearly and without bound.  

By the steepest descent method, the solution of Equation 
(2.6) is defined as follows: 

( )1
1

ˆ ˆ ˆ
N

T T T
n n k nk k k k k k

k

X X F H D Y D H F Xβ+
=

⎧ ⎫
= + ⋅ −⎨ ⎬

⎩ ⎭
∑   (2.7) 

where β  is a scalar defining the step size in the direction of 
the gradient. 
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2.5.2 L1 Norm Estimation for SRR Algorithm 

Another popular family of estimators is the L1 Norm 
estimators [98-100] and this norm is more robust than L2 Norm. The L1 
norm is not sensitive to outliers because the influence function, ( )ρ′ ⋅ , is 
constant and bounded but the L1 norm produces an estimator with higher 
variance than the optimal L2 (quadratic) norm. We rewrite the definition 
of these estimators in the super resolution reconstruction framework as 
the following minimization problem: 

1
ArgMin

N

kk k k
X k

X D H F X Y
=

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑     (2.8) 

By the steepest descent method, the solution of Equation 
(2.8) is defined as follows: 

( )1
1

ˆ ˆ ˆsign
N

T T T
n n n kk k k k k k

k
X X F H D D H F X Yβ+

=

⎧ ⎫⎛ ⎞
= + ⋅ −⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∑  (2.9) 
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2.6 Regularization Technique for SRR Algorithm 

SRR (Super-Resolution Reconstruction), described in 
Section 2.2.4, is an ill-posed problem [98]. For the under-determined 
cases (i.e., when fewer than required frames are available), there exist an 
infinite number of solutions which satisfy (2.2). The solution for squared 
and over-determined cases is not stable, which means small amounts of 
noise in measurements will result in large perturbations in the final 
solution. Therefore, considering regularization in SRR algorithm as a 
mean for picking a stable solution is very useful, if not necessary. Also, 
regularization can help the algorithm to remove artifacts from the final 
answer and improve the rate of convergence. A regularization term 
compensates the missing measurement information with some general 
prior information about the desirable HR solution, and is usually 
implemented as a penalty factor in the generalized minimization cost 
function. Unfortunately, certain types of regularization cost functions 
work efficiently for some special types of images but are not suitable for 
general images. 

From (2.2), we rewrite the definition of these estimators in 
the super resolution context as the following minimization problem: 

( ) ( )
1

ArgMin
N

kk k k
X k

X D H F X Y Xρ λ
=

⎧ ⎫
= − + ⋅ϒ⎨ ⎬

⎩ ⎭
∑   (2.10) 

where ( )ϒ ⋅  is the regularization function and λ  is a scalar 
defining the regularization parameter. 

 

2.6.1 Laplacian Regularization for SRR Algorithm [98-100] 

In general, Tikhonov regularization ( )ϒ ⋅  was replaced by 
matrix realization of the Laplacian kernel [98-100], the most classical and 
simplest regularization cost function. The Laplacian kernel is defined as 

1 1 1
1 1 8 1
8

1 1 1

⎡ ⎤
⎢ ⎥Γ = −⎢ ⎥
⎢ ⎥⎣ ⎦

      (2.11) 

Combining the Laplacian regularization, we propose the 
solution of the super-resolution problem is as follows: 
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( ) ( )
1

ArgMin
N

kk k k REG
X k

X D H F X Y Xρ λ ρ
=

⎧ ⎫
= − + ⋅ Γ⎨ ⎬

⎩ ⎭
∑  (2.12) 

The most classical and simplest regularization norm 
function, ( )REGρ ⋅ , is ( ) ( )2

REGρ ⋅ = ⋅  thus the solution of the super-resolution 
problem is defined as 

( ) ( )2

1
ArgMin

N

kk k k
X k

X D H F X Y Xρ λ
=

⎧ ⎫
= − + ⋅ Γ⎨ ⎬

⎩ ⎭
∑   (2.13) 

2.6.1.1 L2 Norm Estimation with Laplacian Regularization for SRR 
Algorithm [98-100] 

By using L2 norm estimation, we rewrite the definition of 
these estimators in the super resolution context as the following 
minimization problem: 

( ) ( )2 2

1
ArgMin

N

kk k k
X k

X D H F X Y Xλ
=

⎧ ⎫
= − + ⋅ Γ⎨ ⎬

⎩ ⎭
∑   (2.14) 

By the steepest descent method, the solution of Equation 
(2.14) is defined as 

( ) ( )( )1
1

ˆ ˆ ˆ ˆ
N

T T T T
n n k n nk k k k k k

k
X X F H D Y D H F X Xβ λ+

=

⎧ ⎫⎛ ⎞
= + ⋅ − − ⋅ Γ Γ⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∑

          (2.15) 

2.6.1.2 L1 Norm Estimation with Laplacian Regularization for SRR 
Algorithm [98-100] 

By using L1 norm estimation, the definition of these 
estimators in the super resolution context is rewritten as the following 
minimization problem: 

( )2

1
ArgMin

N

kk k k
X k

X D H F X Y Xλ
=

⎧ ⎫
= − + ⋅ Γ⎨ ⎬

⎩ ⎭
∑   (2.16) 

By the steepest descent method, the solution of Equation 
(2.16) is defined as 

( ) ( )( )1
1

ˆ ˆ ˆ ˆsign
N

T T T T
n n n k nk k k k k k

k
X X F H D D H F X Y Xβ λ+

=

⎧ ⎫⎛ ⎞
= + ⋅ − − ⋅ Γ Γ⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∑

          (2.17) 
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2.6.2 MRF (Markov Random Field) Regularization for SRR 
Algorithm [87-89] 

Due to MRF (Markov Random Field) that can model the 
image characteristic especially on image texture, the MRF regularization 
is typically used in single and multiframe image restoration. The 
definition of these estimators in the super resolution context is defined as 
the following minimization problem: 

( ) ( )
1

1ArgMin
2

N
t

kk k k c
X k c CMRF

X D H F X Y Xαρ ρ
β= ∈

⎧ ⎫⎛ ⎞⎪ ⎪= − + −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑ d  

        (2.18) 

In this expression, MRFβ  is the temperature parameter for the 
Gibbs prior, and c  is a local group of pixels contained within the set of all 
image cliques C . The quantity t

c Xd  is a spatial activity measure within 
the data, with a small value in smooth image locations and a large value 
at edges. Traditionally, four spatial activity measures are computed at 
each pixel in the high-resolution image, given by the following second-
order finite differences: 

, ,1 , 1 , , 12t
m n m n m n m nx x x+ −= − +d x      (2.19a) 

, ,2 1, 1 , 1, 10.5 0.5t
m n m n m n m nx x x− + + −= − +d x     (2.19b) 

, ,3 1, , 1,2t
m n m n m n m nx x x− += − +d x      (2.19c) 

, ,4 1, 1 , 1, 10.5 0.5t
m n m n m n m nx x x− − + += − +d x     (2.19d) 

Traditionally, the regularization norm function, ( )αρ ⋅ , may 
be a quadratic function ( ( ) ( )2

αρ ⋅ = ⋅ ) or Huber function that is defined as 

( ) ( ) ( )
2

2

;
2 ;

HUBER
HUBER

HUBER HUBER HUBER HUBER

x x T
x x

T T x T x Tαρ ρ
⎧ ≤⎪= = ⎨ + + >⎪⎩

 

          (2.20) 

where HUBERT  is a threshold parameter separating the 
quadratic and linear regions. 

2.6.2.1 L2 Norm Estimation with MRF Regularization for SRR 
Algorithm [87-89] 
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By using L2 norm estimation, the definition of these 
estimators in the super resolution context is defined as the following 
minimization problem: 

( )( ) ( )2

1

1ArgMin
2

N
t

kk k k c
X k c CMRF

X D H F X Y Xαρβ= ∈

⎧ ⎫⎛ ⎞⎪ ⎪= ⋅ ⋅ ⋅ − + −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑ d

          (2.21) 

By the steepest descent method, the solution of Equation 
(2.21) is defined as 

( )

( )
1

1

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k k k k
k

n n
t

nc
c C

F H D Y D H F X
X X

Xα

β
λ ρ

=
+

∈

⎧ ⎫⎛ ⎞
−⎪ ⎪⎜ ⎟

⎪ ⎪⎝ ⎠= + ⋅ ⎨ ⎬
⎛ ⎞⎪ ⎪′− ⋅⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑

∑ d
 (2.22) 

where ( )αρ′ ⋅  is defined as  

( ) ( )2 ; is a quadratic functionx ifα αρ ρ′ ⋅ = ⋅    (2.23a) 

( ) ( ) ( )
2 ;

; is a Huber function
2 sign ;

HUBER

HUBER HUBER

x x T
if

T x x Tα αρ ρ
⎧ ≤⎪′ ⋅ = ⋅⎨ ⋅ >⎪⎩

          (2.23b) 

2.6.2.2 L1 Norm Estimation with MRF Regularization for SRR 
Algorithm [87-89] 

By using L1 norm estimation, the definition of these 
estimators in the super resolution context is defined s the following 
minimization problem: 

( )
1

1ArgMin
2

N
t

kk k k c
X k c CMRF

X D H F X Y Xαρβ= ∈

⎧ ⎫⎛ ⎞⎪ ⎪= ⋅ ⋅ ⋅ − + −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑ d  

          (2.24) 

By the steepest descent method, the solution of Equation 
(2.24) is defined as 

( )

( )
1

1

ˆsign
ˆ ˆ

ˆ

N
T T T

n kk k k k k k
k

n n
t

nc
c C

F H D D H F X Y
X X

Xα

β
λ ρ

=
+

∈

⎧ ⎫⎛ ⎞
−⎪ ⎪⎜ ⎟

⎪ ⎪⎝ ⎠= + ⋅⎨ ⎬
⎛ ⎞⎪ ⎪′− ⋅⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑

∑ d
 (2.25) 



 39

2.6.3 BTV (Bilateral-Total Variance) Regularization [54, 98-100] for 
SRR Algorithm 

One of the most successful regularization methods for 
denoising and deblurring is the total variation (TV) method [54]. The TV 
criterion penalizes the total amount of change in the image as measured 
by the L1 norm of the magnitude of the gradient. Based on the spirit of 
TV criterion, and a related technique called the bilateral filter [54], the 
robust SRR regularizer [98-100] called Bilateral TV was introduced in 
2004, which is computationally cheap to implement, and preserves edges. 
The BTV regularization is defined as 

( )
0

P P
m l l m

x y
l P m

X X S S Xα +

=− =

ϒ = −∑ ∑     (2.26) 

where matrices (operators), l
xS  and m

yS  shift X  by l  and m  
pixels in horizontal and vertical directions respectively, presenting 
several scales of derivatives. The scalar weight α , 0 1α< < , is applied to 
give a spatially decaying effect to the summation of the regularization 
terms [33, 98-100].  Combining the BTV regularization, we rewrite the 
definition of these estimators in the super resolution context as the 
following minimization problem: 

( )( )
1

0

ArgMin

N

kk k k
k

P PX m l l m
x y

l P m

D H F X Y
X

X S S X

ρ

λ α

=

+

=− =

⎧ ⎫
⋅ ⋅ ⋅ −⎪ ⎪

⎪ ⎪= ⎨ ⎬
⎛ ⎞⎪ ⎪+ −⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑

∑∑
  (2.27) 

2.6.3.1 L2 Norm Estimation with BTV Regularization for SRR 
Algorithm [98-100] 

By using L2 norm estimation, we rewrite the definition of 
these estimators in the super resolution context as the following 
minimization problem: 

( )( )2

1

0

ArgMin

N

kk k k
k

P PX m l l m
x y

l P m

D H F X Y
X

X S S Xλ α

=

+

=− =

⎧ ⎫
⋅ ⋅ ⋅ −⎪ ⎪

⎪ ⎪= ⎨ ⎬
⎛ ⎞⎪ ⎪+ −⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑

∑∑
  (2.28) 

By the steepest descent method, the solution of Equation 
(2.28) is defined as 
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( )

( ) ( )

1

1

0

ˆ ˆ

ˆ

ˆ ˆsign

n n

N
T T T

k nk k k k k k
k

P P
m l l m l m

x y x y
l P m

X X

F H D Y D H F X

I S S X S S X
β

λ α

+

=

+

=− =

=

⎧ ⎫⎛ ⎞
−⎪ ⎪⎜ ⎟

⎪⎝ ⎠ ⎪+ ⋅ ⎨ ⎬
⎛ ⎞⎪ ⎪− − ⋅ −⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑

∑ ∑

 (2.29) 

2.6.3.2 L1 Norm Estimation with BTV Regularization for SRR 
Algorithm [98-100] 

By using L1 norm estimation, the definition of these 
estimators in the super resolution context is defined as the following 
minimization problem: 

1

0

ArgMin

N

kk k k
k

P PX m l l m
x y

l P m

D H F X Y
X

X S S Xλ α

=

+

=− =

⎧ ⎫
⋅ ⋅ ⋅ −⎪ ⎪

⎪ ⎪= ⎨ ⎬
⎛ ⎞⎪ ⎪+ −⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑

∑∑
  (2.30) 

By the steepest descent method, the solution of Equation 
(2.30) is defined as 

( )

( ) ( )

1

1

0

ˆ ˆ

ˆsign

ˆ ˆsign

n n

N
T T T

n kk k k k k k
k

P P
m l l m l m

x y x y
l P m

X X

F H D D H F X Y

I S S X S S X
β

λ α

+

=

+

=− =

=

⎧ ⎫⎛ ⎞
−⎪ ⎪⎜ ⎟

⎪⎝ ⎠ ⎪+ ⋅ ⎨ ⎬
⎛ ⎞⎪ ⎪− − ⋅ −⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑

∑ ∑

 (2.31) 

 

 



CHAPTER III 
A FAST AFFINE BLOCK-BASED REGISTRATION 

AND ROBUST ESTIMATION TECHNIQUES FOR SRR 

In this chapter, we first proposed the novel sub-pixel image 
registration that is designed to overcome the insufficient temporal 
sampling frequency and to register the real complex motion sequence that 
the traditional SSR registration can not support in Section 3.1. To realize 
the implementation of the proposed sub-pixel image registration, the fast 
algorithm is designed to reduce the computational load for the proposed 
sub-pixel registration. We later proposed the novel robust estimation 
technique for SSR framework to increase the estimated performance and 
to robust against the several noise models and registration error in Section 
3.2. Finally, we proposed the SRR algorithm using the proposed robust 
norm estimation with the proposed registration in Section 3.3. 

  

3.1 Fast Affine Block-Based Registration/Motion Estimation [109] 

Due to the prosperity of the multimedia technology, the 
highly accurate motion estimation is crucial in high quality image 
processing applications such as SRR (Super-Resolution Reconstruction) 
algorithms. Numerical methods for solving this problem are based on the 
classical (or translation) block-based motion estimation algorithm but the 
pure translation model can not represent the real complex motion 
effectively. 

This section aims to propose Affine Block-Based Motion 
Estimation which describes the complex motion more efficiently and 
gives excellent result on a highly accurate motion vectors in section 3.1.1, 
and to propose M3SS (Modified Three Step Search) algorithm that is 
designed to reduce a computational load in section 3.1.2. This algorithm 
starts by partitioning the image domain into non-overlapping small 
regions, called blocks, and computing the motion vector within each 
block by an affine model, instead of a conventional translation model. 
Therefore, the motion vector (MV) of each block consists of six motion 
(instead of two) parameters. 
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3.1.1 Affine Block-Based Registration 

Traditionally, the classical motion estimation [109] can 
detect only pure translational motion along the image plane and fails to 
consider any complex motions that arise due to rotation, zooming, etc. An 
efficient way of detecting several complex motions is by using the 
combination of a block-base technique and an affine model. In this 
section, we propose a scheme for estimating affine block-based motion 
vectors suitable for several complex motions. The estimation can be 
separated to 2 stages. At the first stage of the estimation algorithm, the 
current and reference frames are divides into overlapping blocks (16x16). 
This stage divides the image into small areas in order to detect and 
estimate the local motions. The advantage of this stage is to reduce the 
computational load and allow the parallel processing. Next, the second 
stage computes the affine motion vector of each block between the 
current and the reference frame. 

 

3.1.2 Modified Three Step Search Algorithm 

The M3SS is proposed to reduce a very high computational 
load in affine motion vector estimation. The 3SS (Three Step Search) is 
one of the popular and fast algorithms used in the translational 
registration; therefore, this paper develops the M3SS (6 motion parameter 
estimation, Equation (3.1)) based on 3SS (2 motion parameter estimation 
Equation (3.2)). 

, ( , )x affinemv x y ax by c= + +  and 

, ( , )y affinemv x y dx ey f= + +      (3.1) 

, ( , )x tranmv x y a=  and , ( , )y tranmv x y b=    (3.2) 

For the 7x7 displacement window (translational 
deformation) and 20±  degree (rotation, extraction or expansion 
deformation), the proposed M3SS algorithm utilizes a search pattern with 

72936 =  check points on a search window in the first step. The point 
having the minimum error is used as the center of the search area in the 
subsequent step. The search window is reduced by half in the subsequent 
step until the search window equals to pre-determined resolution. (The 
criterion for parameter selection in this paper was based on experiments 
and the chosen parameters produce the highest PSNR result on 3 standard 
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sequences: Foreman, Carphone and Stefan [109].) The process of M3SS 
is described as follow: 

Step 1 : Initialized the dimension of the searching area to the 
value depicted in Equation (3.3). 

[ ], , , , ,
[ 0.16, 0.16, 2 0.16, 0.16, 2]
a b c d e f
= ± ± ± ± ± ±

    (3.3) 

Step 2 : A minimum BDM (Block Distortion Measure) point 
is found from a 729  check point pattern at the center of the searching area 
as shown in (3.3) and this process is shown in Fig. 3.1. 

Step 3 : If the search window is equal to (3.4) then the 
process stop otherwise go to step 4 and this process is shown in Fig. 3.2. 

[ ], , , , ,
[ 0.01, 0.01, 0.125 0.01, 0.01, 0.125]
a b c d e f
= ± ± ± ± ± ±

  (3.4) 

Step 4 : The search window is reduced by half in all 
dimensions of the previous search window and a minimum BDM (Block 
Distortion Measure) point is found from a 729  check point pattern at the 
center of the new searching area. It will go to step 2. 

From Table 1, the total number of the M3SS check points is 
fixed at 3.65E+3. Compared with the classical block-based estimation 
method (translation block-based estimation method) at 0.25 pixel 
accuracy and w=9, the total number of the M3SS check points has just 
approximately 3 times more computational load than the classical FS 
approach. 

 

Table 3.1 : Performance Comparison of Registration Method 
 

Block-Based BMA The Number of 
Registration 

Method 
(Block Matching 

Algorithm) Search Points 
Affine FS (Full Search) 1.29E+09 

  M3SS 3.65E+03 
Translation FS (Full Search : 0.25 Pixel) 1.09E+03 

  FS (Full Search : 1 Pixel) 2.56E+02 
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 MIN_MAD = INF

 For each block

For c = -2 : 2 : 2

For f = -2 : 2 : 2

For a = -0.16 : 0.16 : 0.16

For b = -0.16 : 0.16 : 0.16

For d = -0.16 : 0.16 : 0.16

For e = -0.16 : 0.16 : 0.16

- The Reference frame is transformed

       by affine MV (a,b,c,d,e,f) to be

       the transformed Frame.

- Compute the MAD value between the 

       transformed frame and current frame.

- If the MAD is less than MIN_MAD

       then MIN_MAD is equal the MAD

       and the 1st level affine MV is

       (a,b,c,d,e,f).

ENDfor

ENDfor

ENDfor

ENDfor

ENDfor

ENDfor

 ENDfor

 

Figure 3.1 :  The Algorithm of the M3SS at Step 2 

0 0 0 0 0 0

0 0

0 0

0 0

0 0

 (a ,b ,c ,d ,e ,f) = previous affine MV 

 MIN_MAD = INF

 For each block

For c = c -0.125 : 0.125 :c + 0.125

For f = f -0.125 : 0.125 :f + 0.125

For a = a -0.01 : 0.01 : a +0.01

For b = b -0.01 : 0.01 : b

0 0

0 0

+0.01

For d = d -0.01 : 0.01 : d +0.01

For e = e -0.01 : 0.01 : e +0.01

- The Reference frame is transformed

       by affine MV (a,b,c,d,e,f) to be

       the transformed Frame.

- Compute the MAD value between the 

       transformed frame and current frame.

- If the MAD is less than MIN_MAD

       then MIN_MAD is equal the MAD

       and the best affine MV is

       (a,b,c,d,e,f).

ENDfor

ENDfor

ENDfor

ENDfor

ENDfor

ENDfor

 ENDfor

 

Figure 3.2 :  The Algorithm of the M3SS at Step 4 
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3.2 Robust Norm Estimation for SRR [120] 

The success of SRR algorithm is highly dependent on the 
accuracy of the imaging process model. Unfortunately, these models are 
not supposed to be exactly true, as they are merely mathematically 
convenient formulations of some general prior information. When the 
data or noise model assumptions do not faithfully describe the measure 
data, the estimator performance degrades. Furthermore, existence of 
outliers defined as data points with different distributional characteristics 
than the assumed model will produce erroneous estimates. Almost all 
noise models used in SRR algorithms are based on Additive White 
Gaussian Noise (AWGN) model; therefore, SRR algorithms can 
effectively apply only on the image sequence that is corrupted by 
AWGN. Due to this noise model, L1 norm or L2 norm error are 
effectively used in SRR algorithm. Unfortunately, the real noise models 
that corrupt the measure sequence are unknown therefore SRR algorithm 
using L1 norm or L2 norm may degrade the image sequence rather than 
enhance it. The robust norm error is necessary for SRR algorithm 
applicable to several noise models. For normally distributed data, the L1 
norm produces estimates with higher variance than the optimal L2 
(quadratic) norm but the L2 norm is very sensitive to outliers because the 
influence function increases linearly and without bound. From the robust 
statistical estimation [58-61], Huber, Lorentzian and Tukey-Biweigth 
Norm are designed to be more robust than L1 and L2. While these robust 
norms are designed to reject outliers, these norms must be more forgiving 
about the remaining outliers; that is, it should increase less rapidly than 
L2. The norm function and their influence functions investigated in the 
section are shown in Figure 3.3. 

3.2.1 Huber Norm Estimation for SRR [114, 119] 

A robust estimation is estimated technique that is resistance 
to such outliers. In SRR framework, outliers are measured images or 
corrupted images that are highly inconsistent with the high resolution 
original image. Outliers may arise from several reasons such as 
procedural measurement error, noise or inaccurate mathematical model. 
Outliers should be investigated carefully; therefore, we need to analyze 
the outlier in a way which minimizes their effect on the estimated model. 
L2 norm estimation is highly susceptible to even a small number of 
discordant observations or outliers. For L2 norm estimation, the influence 
of the outlier is much larger than the other measured data because L2 
norm estimation weights the error quadraticly.  Consequently, the 
robustness of L2 norm estimation is poor. 
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Figure 3.3 The Norm function and the Influence function 
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Huber’s norm [58-61, 114, 119] is one of error norm from 
the robust statistic literature. It is equivalent to the L1 norm for large 
value. But, for normally distributed data, the L1 norm produces estimates 
with higher variance than the optimal L2 (quadratic) norm, so Huber’s 
norm is designed to be quadratic for small values and its influence does 
not descend all the way to zero. The Huber norm function ( ( )ρ ⋅ ) and its 
influence function ( ( )ρ′ ⋅ ) are shown in Figure 3.3 (c-1) and Figure 3.3 (c-
2), respectively 

3.2.1.1 Huber Norm Estimation Definition 

In this section, we propose the novel robust SRR using 
Huber error norm. From (2.2), we rewrite the definition of these robust 
estimators in the super resolution context as the following minimization 
problem:  

 ( )
1

ArgMin
N

kHUBER k k k
X k

X D H F X Yρ
=

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑    (3.5) 

( ) ( )
2

2

;
2 ;HUBER

x x T
x

T T x T x T
ρ

⎧ ≤⎪= ⎨ + + >⎪⎩
   (3.6) 

where T  is norm constant parameter that is a soft threshold 
value.  

3.2.1.2 Huber Norm Estimation for SRR [114, 119] 

By the steepest descent method, the solution of Equation 
(3.5) is defined as 

( )1
1

ˆ ˆ ˆ
N

T T T
n n k nk k k HUBER k k k

k
X X F H D Y D H F Xβ ρ+

=

⎧ ⎫′= + ⋅ ⋅ −⎨ ⎬
⎩ ⎭
∑  (3.7) 

( ) ( )
2 ;

2 sign ;HUBER

x x T
x

T x x T
ρ

⎧ ≤⎪′ = ⎨ ⋅ >⎪⎩
    (3.8) 
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3.2.1.3 Huber Norm Estimation for SRR with Laplacian 
Regularization [114, 115] 

Combining the Laplacian regularization, we propose the 
solution of the super-resolution problem as follows: 

( ) ( )2

1

ArgMin
N

kHUBER k k k
X k

X D H F X Y Xρ λ
=

⎧ ⎫
= − + ⋅ Γ⎨ ⎬

⎩ ⎭
∑  (3.9) 

By the steepest descent method, the solution of Equation 
(3.9) is defined as 

( )
( )( )

11

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k HUBER k k k
kn n

T
n

F H D Y D H F X
X X

X

ρ
β

λ
=+

⎧ ⎫′⋅ −⎪ ⎪
= + ⋅⎨ ⎬

⎪ ⎪− ⋅ Γ Γ⎩ ⎭

∑
 (3.10) 

3.2.1.4 Huber Norm Estimation for SRR with Huber-Laplacian 
Regularization [119] 

Combining the Huber-Laplacian regularization, we propose 
the solution of the super-resolution problem as follows: 

( ) ( )
1

ArgMin
N

kHUBER k k k HUBER
X k

X D H F X Y Xρ λ ψ
=

⎧ ⎫
= − + ⋅ Γ⎨ ⎬

⎩ ⎭
∑  (3.11) 

( ) ( )
2

2

;
2 ;

g
HUBER

g

x x T
x

T T x T x T
ψ

⎧ ≤⎪= ⎨ + + >⎪⎩
   (3.12) 

By the steepest descent method, the solution of Equation 
(3.12) is defined as 

( )
( )( )

1
1

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k HUBER k k k
k

n n
T

nHUBER

F H D Y D H F X
X X

X

ρ
β

λ ψ

=
+

⎧ ⎫′⋅ −⎪ ⎪⎪ ⎪= + ⋅ ⎨ ⎬
⎪ ⎪′− ⋅Γ ⋅ Γ⎪ ⎪⎩ ⎭

∑
 (3.13) 

( ) ( )
2 ;

2 sign ;
g

HUBER
g g

x x T
x

T x x T
ψ

⎧ ≤⎪′ = ⎨ ⋅ >⎪⎩
   (3.14) 
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3.2.2 Lorentzian Norm Estimation for SRR [113, 115, 116, 120] 

This section first reviews the main concepts of Lorentzian 
norm estimation technique and later develops the Lorentzian norm 
estimation for SRR framework. 

3.2.2.1 Lorentzian Norm Estimation Definition 

Much can be improved if the influence is bounded in one 
way or another. This is exactly the general idea of applying a robust error 
norm. Instead of using the sum of squared differences (2.6), this error 
norm should be selected such that above a given level of x , its influence 
is ruled out. In addition, one would like to have ( )xρ  being smooth so 
that numerical minimization of (2.2) is not too difficult. The one of 
suitable choices (among other) is so-called Lorentzian error norm [58-
61]. In this section, we propose the novel robust SRR using Lorentzian 
error norm. From (2.2), the definition of these robust estimators in the 
super resolution is defined context as the following minimization 
problem: 

( )
1

ArgMin
N

kLOR k k k
X k

X D H F X Yρ
=

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑    (3.15) 

( )
21log 1

2LOR
xx
T

ρ
⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
     (3.16) 

For values of x  smaller than T , the function follows the L2 norm. For 
values larger than T , the function gets saturated. Consequently for small 
value of x , the derivative of ( ) ( ){ }x x xρ ρ′ = ∂ ∂  of ( )xρ  is nearly a 
constant. But for large values of x  (for outliers), it becomes nearly zero. 
Therefore, in a Gauss-Newton style of optimization, the Jacobian matrix is 
virtually zero for outliers. Only residuals that are about as large as T  or 
smaller than that play a role. 

From L1 and L2 norm estimation point of view, Lorentzian’s 
norm is equivalent to the L1 norm for large value. But, for normally 
distributed data, the L1 norm produces estimates with higher variance 
than the optimal L2 (quadratic) norm, so Lorentzian’s norm is designed to 
be quadratic for small values and be bound for large values. The 
Lorentzian norm function ( ( )ρ ⋅ ) and it influence function ( ( )ρ′ ⋅ ) are 
shown in Figure 3.3 (c-1) and Figure 3.3 (c-2) respectively.  
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3.2.2.2 Lorentzian Norm Estimation for SRR [113, 115, 116, 120] 

By the steepest descent method, the solution of Equation 
(3.15) is defined as 

( )1
1

ˆ ˆ ˆ
N

T T T
n n k nk k k LOR k k k

k

X X F H D Y D H F Xβ ρ+
=

⎧ ⎫′= + ⋅ ⋅ −⎨ ⎬
⎩ ⎭
∑  (3.17) 

( ) 2 2

2
2LOR

xx
T x

ρ′ =
+

      (3.18) 

3.2.2.3 Lorentzian Norm Estimation for SRR with Laplacian 
Regularization [113, 115, 116, 120] 

Combining the Laplacian regularization, we propose the 
solution of the super-resolution problem as follows: 

( ) ( )2

1
ArgMin

N

kLOR k k k
X k

X D H F X Y Xρ λ
=

⎧ ⎫
= − + ⋅ Γ⎨ ⎬

⎩ ⎭
∑   (3.19) 

By the steepest descent method, the solution of Equation 
(3.19) is defined as 

( )
( )( )

11

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k LOR k k k
kn n

T
n

F H D Y D H F X
X X

X

ρ
β

λ
=+

⎧ ⎫′⋅ −⎪ ⎪
= + ⋅⎨ ⎬

⎪ ⎪− ⋅ Γ Γ⎩ ⎭

∑
 (3.20) 

3.2.2.4 Lorentzian Norm Estimation for SRR with Lorentzian-
Laplacian Regularization [113, 120] 

Combining the Lorentzian-Laplacian regularization, we 
propose the solution of the super-resolution problem as follows:  

( ) ( )
1

ArgMin
N

kLOR k k k LOR
X k

X D H F X Y Xρ λ ψ
=

⎧ ⎫
= − + ⋅ Γ⎨ ⎬

⎩ ⎭
∑  (3.21) 

( )
2

1log 1
2LOR

g

xx
T

ψ
⎡ ⎤⎛ ⎞
⎢ ⎥= + ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

     (3.22) 

By the steepest descent method, the solution of Equation 
(3.21) is defined as 
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( )
( )( )

1
1

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k LOR k k k
k

n n
T

nLOR

F H D Y D H F X
X X

X

ρ
β

λ ψ

=
+

⎧ ⎫′⋅ −⎪ ⎪⎪ ⎪= + ⋅ ⎨ ⎬
⎪ ⎪′− ⋅Γ ⋅ Γ⎪ ⎪⎩ ⎭

∑
 (2.23) 

( ) 2 2

2
2LOR

g

xx
T x

ψ ′ ==
+

     (2.24) 
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3.2.3 Tukey's Biweigth Estimation Norm for SRR [117] 

This section first reviews the main concepts of Tukey’s 
Biweigth norm estimation technique and later develops the Tukey’s 
Biweigth norm estimation for SRR framework. 

3.2.3.1 Tukey's Biweigth Norm Estimation Definition 

Tukey’s Biweight norm [58-61, 117] is another error norm 
from the robust statistic literature. It is more robust than L1 and L2 norm. 
While the Lorentzian norm is more robust than L2 (quadratic norm), its 
influence does not descend all the way to zero. Tukey’s Biweight norm is 
a more robust from the robust statistics literature whose value does 
descend to zero. We propose the novel robust SRR using Tukey’s 
Biweigth error norm. From (2.2), we rewrite the definition of these robust 
estimators in the super resolution context as the following minimization 
problem: 

( )
1

ArgMin
N

kTUKEY k k k
X k

X D H F X Yρ
=

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑    (3.25) 

( )

2 4 6

2 4 6 ;
3

1 ;
3

TUKEY

x x x x T
T T Tx

otherwise
ρ

⎧
− + ≤⎪⎪= ⎨

⎪
⎪⎩

   (3.26) 

3.2.3.2 Tukey's Biweigth Norm Estimation for SRR 

By the steepest descent method, the solution of Equation 
(3.25) is defined as 

( )1
1

ˆ ˆ ˆ
N

T T T
n n k nk k k TUKEY k k k

k
X X F H D Y D H F Xβ ρ+

=

⎧ ⎫′= + ⋅ ⋅ −⎨ ⎬
⎩ ⎭
∑  (3.27) 

( ) ( )
221 ;

0 ;
TUKEY

x x T x Tx
otherwise

ρ
⎧ ⎡ ⎤− ≤⎪ ⎣ ⎦′ = ⎨
⎪⎩

   (3.28) 
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3.2.3.3 Tukey's Biweigth Norm Estimation for SRR with Laplacian 
Regularization 

Combining the Laplacian regularization, we propose the 
solution of the super-resolution problem as follows: 

( ) ( )2

1
ArgMin

N

kTUKEY k k k
X k

X D H F X Y Xρ λ
=

⎧ ⎫
= − + ⋅ Γ⎨ ⎬

⎩ ⎭
∑   (3.29) 

By the steepest descent method, the solution of Equation 
(3.29) is defined as 

( )
( )( )

11

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k TUKEY k k k
kn n

T
n

F H D Y D H F X
X X

X

ρ
β

λ
=+

⎧ ⎫′⋅ −⎪ ⎪
= + ⋅⎨ ⎬

⎪ ⎪− ⋅ Γ Γ⎩ ⎭

∑
 (3.30) 

 

3.2.3.4 Tukey's Biweigth Norm Estimation for SRR with Tukey-
Laplacian Regularization 

Combining the Tukey-Laplacian regularization, we propose 
the solution of the super-resolution problem as follows:  

( ) ( )
1

ArgMin
N

kTUKEY k k k TUKEY
X k

X D H F X Y Xρ λ ψ
=

⎧ ⎫
= − + ⋅ Γ⎨ ⎬
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   (3.32) 

By the steepest descent method, the solution of Equation 
(3.31) is defined as 

( )
( )( )
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ˆ ˆ
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k nk k k TUKEY k k k
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n n
T
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( ) ( )
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0 ;

g g
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x x T x Tx
otherwise
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   (3.34) 
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3.3 Robust Estimation for SRR using Fast Affine Block-Based 
Registration [110-112, 118, 121-122] 

In this section, we proposed the SRR algorithm using the 
proposed robust estimation (Huber, Lorentzian and Tukey's Biweigth 
norm) with affine block-based registration for applying on the real image 
sequences that have complex motion and that is corrupted by the several 
noise models. Therefore, we propose the definition of the SRR using 
affine block-based registration as the following minimization problem: 

( )
1

ArgMin
N

kk k k
X k

X D H G X Yρ
=

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑    (3.35) 

where ( )ρ ⋅  is the norm estimation and the kG   stands for the 
geometric warp operator (affine) between the images X  and kY . [25, 109] 

 

3.3.1 L2 Norm Estimation for SRR using Fast Affine Block-Based 
Registration [111, 112, 118] 

3.3.1.1 L2 Norm Estimation for SRR 

In this section, we propose the novel SRR using L2 error 
norm with fast affine block-based registration. From (3.35), we propose 
the definition of these robust estimators in the super resolution context as 
the following minimization problem:  

( )2

1

ArgMin
N

kk k k
X k

X D H G X Y
=

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
∑     (3.36) 

By the steepest descent method, the solution of Equation 
(3.36) is defined as 

( )1
1

ˆ ˆ ˆ
N

T T T
n n k nk k k k k k

k
X X G H D Y D H G Xβ+

=

⎧ ⎫
= + ⋅ ⋅ −⎨ ⎬

⎩ ⎭
∑   (3.37) 

3.3.1.2 L2 Norm Estimation for SRR with Laplacian Regularization 

Combining the Laplacian regularization, we propose the 
solution of the super-resolution problem as follows:  
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By the steepest descent method, the solution of Equation 
(3.38) is defined as 

( )
( )( )
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∑
  (3.39) 

 

3.3.2 L1 Norm Estimation for SRR using Fast Affine Block-Based 
Registration [110] 

3.3.2.1 L1 Norm Estimation for SRR 

In this section, we propose the novel SRR using L1 error 
norm with fast affine block-based registration. From (3.35), we propose 
the definition of these robust estimators in the super resolution context as 
the following minimization problem:  

1

ArgMin
N

kk k k
X k

X D H G X Y
=

⎧ ⎫
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⎩ ⎭
∑     (3.40) 

By the steepest descent method, the solution of Equation 
(3.40) is defined as 
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3.3.2.2 L1 Norm Estimation for SRR with Laplacian Regularization 

Combining the Laplacian regularization, we propose the 
solution of the super-resolution problem as follows:  
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By the steepest descent method, the solution of Equation 
(3.42) is defined as 
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3.3.3 Huber Norm Estimation for SRR using Fast Affine Block-Based 
Registration  

 

3.3.3.1 Huber Norm Estimation for SRR 

In this section, we propose the novel robust SRR using 
Huber error norm. From (3.35), we propose the definition of these robust 
estimators in the super resolution context as the following minimization 
problem:  
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By the steepest descent method, the solution of Equation 
(3.44) is defined as 
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3.3.3.2 Huber Norm Estimation for SRR with Laplacian 
Regularization 

Combining the Laplacian regularization, we propose the 
solution of the super-resolution problem as follows:  
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By the steepest descent method, the solution of Equation 
(3.46) is defined as 
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3.3.4 Lorentzian Norm Estimation for SRR using Fast Affine Block-
Based Registration [122] 

 

3.3.4.1 Lorentzian Norm Estimation for SRR 

In this section, we propose the novel robust SRR using 
Lorentzian error norm. From (3.35), we propose the definition of these 
robust estimators in the super resolution context as the following 
minimization problem: 
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1
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X k

X D H G X Yρ
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 By the steepest descent method, the solution of Equation 
(3.48) is defined as 
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3.3.4.2 Lorentzian Norm Estimation for SRR with Laplacian 
Regularization 

Combining the Laplacian regularization, we propose the 
solution of the super-resolution problem as follows: 
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By the steepest descent method, the solution of Equation 
(3.50) is defined as 
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3.3.5 Tukey's Biweigth Norm Estimation for SRR using Fast Affine 
Block-Based Registration [121] 

 

3.3.5.1 Tukey's Biweigth Norm Estimation for SRR 

In this section, we propose the novel robust SRR using 
Tukey’s Biweigth error norm. From (3.35), we propose the definition of 
these robust estimators in the super resolution context as the following 
minimization problem: 
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By the steepest descent method, the solution of Equation 
(3.52) is defined as 
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3.3.5.2 Tukey's Biweigth Norm Estimation for SRR with Laplacian 
Regularization 

Combining the Laplacian regularization, we propose the 
solution of the super-resolution problem as follows:  

( ) ( )2

1
ArgMin

N

kTUKEY k k k
X k

X D H G X Y Xρ λ
=

⎧ ⎫
= − + ⋅ Γ⎨ ⎬

⎩ ⎭
∑  (3.54) 

By the steepest descent method, the solution of Equation 
(3.54) is defined as 
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CHAPTER IV   
THE EXPERIMENTAL RESULTS 

The purpose of this chapter is to analyze how the proposed 
registration (fast affine block-based) and the proposed robust norm 
estimation (Huber, Lorentzian and Tukey) can affect the performance of 
the SRR algorithm. 

In this chapter, five cases are studies. In the first case, the 
performance of registration approaches is evaluated. Section 4.1 presents 
the experiments and results obtained by the proposed registration (fast 
affine block-based) and the classical registration (translation block-based) 
in order to analyze the proposed registration accuracy [109]. Next, 
Section 4.2 presents the experiments and results obtained by the SRR 
algorithm using the proposed registration and the classical registration to 
demonstrate the effect of the proposed registration on the SRR 
performance on the standard sequence such as Susie and Foreman 
Sequence [110-112, 118]. Third, Section 4.3 analyzes how the proposed 
robust norm estimation impacts the performance of SRR algorithm. This 
section presents the experiments and results obtained the SRR algorithms 
using the proposed robust norm estimation (Huber norm, Lorentzian 
norm and Tukey norm) compared with the classical SRR algorithm using 
L1 and L2 norm [113-117, 119-120]. Section 4.4 analyzes the 
performance of proposed norm estimation hence this section presents the 
experiments and results obtained the SRR algorithms using the proposed 
robust norm estimation with the classical registration compared with the 
classical SRR algorithm using L1 and L2 norm. Finally, Section 4.5 
presents the experiments and results obtained by the SRR algorithm using 
the proposed robust norm estimation with fast affine block-based 
registration [121-122]. 
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4.1 Experiments on Fast Affine Block-Based Registration [109] 

This section investigates the accuracy performance of the 
proposed registration (affine block-based) compared with the classical 
registration (translation block-based). This experiment intends to study 
the registration accuracy that is traditionally used in the SRR algorithm 
and the proposed registration accuracy. This section presents the 
experiments and results obtained by the classical registration using FS 
(Full Search) and proposed registration using M3SS (Modified Three 
Step Search) as proposed in section 3.1. These experiments are 
implemented in MATLAB. Three standard video sequences (Carphone, 
Foreman and Stefan) in QCIF format (176x144) were used as the test 
sequences which can be categorized by moving characteristic. First, 
Carphone sequence has only a moving foreground but the background is 
almost stationary. Second, Foreman sequence has both slightly moving 
foreground and background. Finally, Stefan sequence has both 
dramatically moving foreground and background. For the classical 
registration using FS (Full Search), the search window w=9 and the block 
size is fixed at 16x16. For the proposed registration using M3SS 
(Modified Three Step Search), the search window w=7 and the block size 
is fixed at 16x16 [109]. The performance of the estimation algorithm is 
evaluated quantitatively. To quantitatively measure the accuracy of the 
proposed methodology, the PSNR (Peak Signal to Noise Ratio) [125] is 
used to measure the error between the compensated frame and the current 
frame. The PSNR is defined as 

( )
2

10 210 log MAX

current compensated

PSNR ψ

ψ ψ

⎛ ⎞
⎜ ⎟= ×
⎜ ⎟−⎝ ⎠

   (4.1) 

where - currentψ  is the current frame 
   - compensatedψ  is the compensated frame 
   - MAXψ  is the peak (maximum) intensity value of the video signal. 
 

4.1.1 Carphone Sequence 

The performance comparison between the M3SS and 
classical method (1st Frame-35th Frame) is depicted in Figure 4.1 and we 
can observe that the PSNR of the M3SS method is 5-6 dB higher than 
that of the classical method. 

The simulation results of the Carphone sequence (14th 
Frame and 15th Frame) are displayed in figure 4.2. The PSNR between 
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the current frame and the classical compensated frame for the 16x16 pixel 
block size is 29.3762 dB and the MCD (Motion Compensated Difference) 
of the classical method is shown in figure 4.2 (d). The PSNR between the 
current frame and the M3SS compensated frame is 35.1235 dB as shown 
in Figure 4.2 (e). From this result, we can observe that the MCD of the 
M3SS is obviously better than the classical method.  

4.1.2 Foreman Sequence 

The performance comparison between the proposed M3SS 
algorithm and the classical algorithm (101st Frame-135th Frame) is 
depicted in figure 4.3 and we can observe that the proposed M3SS 
algorithm has outstandingly better result than the classical method. 

Figure 4.4 shows the simulation results of the Foreman 
sequence (115th Frame and 116th Frame) and the PSNR between the 
current frame and the classical compensated frame is 29.3762 dB as 
shown in Fig. 4.4 (d). Next, the PSNR between the current frame and the 
M3SS compensated frame is 34.4652 dB and the MCD of the M3SS 
method is shown in figure 4.4 (e).  

4.1.3 Stefan Sequence 

The performance comparison between the proposed M3SS 
algorithm and the classical algorithm (101st Frame-135th Frame) is 
depicted in Figure 4.5 and we can observe that the proposed M3SS 
algorithm has dramatically better result than the classical method about 4-
5 dB. 

The Stefan sequence (16th Frame) is shown in Figure 4.6 (a) 
and the Stefan sequence (17th Frame) is shown in Figure 4.6 (b). The 
absolute difference between the 16th Frame and 17th Frame are shown in 
Figure 4.6 (c) and the PSNR between the two frames is 18.5385 dB. The 
PSNR between the current frame and the classical compensated frame is 
18.5385 dB and the MCD (Motion Compensated Difference) of the 
classical method is shown in Figure 4.6 (d). Next, the PSNR between the 
current frame and the M3SS compensated frame is 25.5609 dB and the 
MCD of the M3SS method is shown in Figure 4.6 (e). 

Although all three experimental results demonstrate that the 
proposed registration require higher computation than the classical 
registration but the proposed registration have obviously better PSRN 
performance compared to the classical registration. 
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Figure 4.1 :  Performance Comparison between the 
compensated frame produced by the proposed M3SS and classical 

algorithm of Carphone sequence 

(a) Reference Frame (fr.14) (b) Current Frame (fr.15)

( )

(d) MCD of the Classical Method ( 10)
(fr.15)

PSNR = 29.3762 dB

×

( )

(e) MCD of the M3SS Method ( 10)
(fr.15)

PSNR = 35.1235 dB

×

( )
(c) Frame Difference ( 10)

PSNR = 18.5385 dB
×

 

Figure 4.2 : MCD Comparison between the compensated frame produced 
by the proposed and classical estimation method of Carphone sequence 
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Figure 4.3 :  Performance Comparison between the compensated frame 
produced by the proposed M3SS and classical algorithm of Foreman 

sequence 

(a) Reference Frame (fr.115) (b) Current Frame (fr.116)

( )

(e) MCD of the Classical Method ( 10)
(fr.116)

PSNR = 29.5777 dB

×

( )

(f) MCD of the M3SS Method ( 10)
(fr.116)

PSNR = 34.4652 dB

×

( )
(d) Frame Difference ( 10)

PSNR = 26.1874 dB
×

( )

(c) Compensated Frame ( 10)
(fr.116)

PSNR = 34.4652 dB

×

 

Figure 4.4 : MCD Comparison between the compensated frame produced 
by the proposed and classical estimation method of Foreman sequence 
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Figure 4.5 : Performance Comparison between the compensated frame 
produced by the proposed M3SS and classical algorithm of Stefan 

sequence 

(a) Reference Frame (fr.16) (b) Current Frame (fr.17)

( )

(d) MCD of the Classical Method ( 5)
(fr.17)

PSNR = 22.4539 dB

×

( )

(e) MCD of the M3SS Method ( 5)
(fr.17)

PSNR = 25.5609 dB

×

( )
(c) Frame Difference ( 5)

PSNR = 18.5385 dB
×

 

Figure 4.6 : MCD Comparison between the compensated frame produced 
by the proposed and classical estimation method of Stefan sequence 
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4.2 Experiments on the SRR algorithm using Fast Affine Block-
Based Registration [110-112, 118]  

This section presents the experiments and results obtained by 
the SRR algorithm using proposed fast affine block-based registration 
that are calculated by Equation (3.39) and Equation (3.43) respectively. 
To demonstrate the proposed registration performance, the results of L1 
norm SRR with the classical translation block-based registration 
calculated by Equation (2.17) and the results of L2 norm SRR with the 
classical translation block-based registration calculated by Equation 
(2.15) are presented in order to compare the performance. 
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Figure 4.7 : The block diagram of LR image sequence synthesis 
algorithm for the SRR algorithm using the proposed fast affine block-

based registration 

The experiment was implemented in MATLAB and the 
block size of LR images is fixed at 8x8 (or 16x16 for overlapping block) 
and the search window is 7 for fast affine block-based registration [109] 
and 5 Frames for ML estimation process. The 38th- 42nd frame Susie 
sequence and the 108th- 112th frame Foreman sequence, which are QCIF 
format (176x144), are used in these experiments to generate the high 
resolution : 40th frame Susie and 110th frame Foreman respectively. Both 
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sequences are in QCIF format and have complex-edge characteristic. 
Then, to simulate the effect of camera PSF, the images were convolved 
with a symmetric Gaussian low-pass filter with the size of 3x3 and 
standard deviation of one. The blurred images were subsampled by the 
factor of 2 in each direction (88x72) and the blurred subsampled images 
were corrupted by Gaussian noise. The LR image sequence synthesis 
algorithm is shown in Figure 4.7.  

 The criterion for parameter selection in this experiment was 
to choose parameters which produce both most visually appealing results 
and highest PSNR. Therefore, to ensure fairness, each experiment was 
repeated several times with different parameters and the best result of 
each experiment was chosen [97-100]. 

4.2.1 Susie Sequence (The 40th Frame) 

4.2.1.1 Noiseless 

The original HR image is shown in Fig. 4.8 (a-1) and one of 
corrupted LR images is shown in Fig. 4.8 (a-2). The result of L1 
estimator using classical registration, L2 estimator using classical 
registration, L1 estimator using proposed registration and L2 estimator 
using proposed registration are shown in Figs. 4.8(a-3) - 4.8(a-6), 
respectively. (The below image on our experiment result of each 
subfigure is the absolute difference between it’s correspond upper image 
to the original HR image. The difference is magnified by 5.) 

4.2.1.2 AWGN (Additive White Gaussian Noise) 

This experiment is a 5 AWGN cases at SNR=25, 22.5, 20, 
17.5 and 15dB respectively and the original HR images are shown in 
Figs. 4.8(b-1) - (f-1) respectively. The corrupted images at SNR=25, 
22.5, 20, 17.5 and 15dB are showed in Figs. 4.8(b-2) - 4.8(f-2) 
respectively. The result of L1 estimator using classical registration, L2 
estimator using classical registration, L1 estimator using proposed 
registration and L2 estimator using proposed registration are shown in 
Figs. 4.8(b-3) - 4.8(b-6) for SNR=25dB, Figs. 4.8(c-3) - 4.8(c-6) for 
SNR=22.5dB, Figs. 4.8(d-3) - 4.8(d-6) for SNR=20dB , Figs. 4.8(e-3) - 
4.8(e-6) for SNR=17.5dB and Figs. 4.8(f-3) - 4.8(f-6) for SNR=25dB, 
respectively. 

4.2.1.3 Poisson Noise 

This experiment is a poison Noise cases. The original HR 
image is shown in Fig. 4.8(g-1) and one of corrupted LR images is shown 
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in Fig. 4.8(g-2). The result of L1 estimator using classical registration, L2 
estimator using classical registration, L1 estimator using proposed 
registration and L2 estimator using proposed registration are shown in 
Figs. 4.8(g-3) - 4.8(g-6). 

4.2.1.4 Salt&Pepper Noise 

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, 
D=0.010 and D=0.015 respectively (D is the noise density) and the 
original HR images are shown in Figs. 4.8(h-1) – (j-1). The corrupted 
images at D=0.005, D=0.010 and D=0.015 are showed in Fig. 4.8(h-2), 
Fig. 4.8(i-2) and Fig. 4.8(j-2), respectively. The result of L1 estimator 
using classical registration, L2 estimator using classical registration, L1 
estimator using proposed registration and L2 estimator using proposed 
registration are shown in Figs. 4.8(h-3) - 4.8(h-6) for D=0.005, Fig. 4.8(i-
3) - 4.8(i-6) for D=0.010 and Fig. 4.8(j-3) - 4.8(j-6) for D=0.015, 
respectively. 

4.2.1.5 Speckle Noise 

The last experiment is a 3 Speckle Noise cases for 40th 
frame Susie sequence at V=0.01, V=0.02 and V=0.03 respectively (V is 
the noise variance) and the original HR images are shown in Fig. 4.8(k-1) 
–4.8(m-1). The corrupted images at V=0.01, V=0.02 and V=0.03 are 
showed in Fig. 4.8(k-2), Fig. 4.8(l-2) and Fig. 4.8(m-2), respectively. The 
result of L1 estimator using classical registration, L2 estimator using 
classical registration, L1 estimator using proposed registration and L2 
estimator using proposed registration are shown in Figs. 4.8(k-3) - 4.8(k-
6) for V=0.01, Figs. 4.8(l-3) - 4.8(l-6) for V=0.02 and Figs. 4.8(m-3) - 
4.8(m-6) for V=0.03 respectively. 

From all experimental results of Susie Sequence (40th 
Frame), the SRR algorithm using L1 norm with the proposed registration 
gives the higher PSRN than the SRR algorithm using L1 norm with the 
classical registration. Moreover, the SRR algorithm using L2 norm with 
the proposed registration gives the higher PSRN than the SRR algorithm 
using L2 norm with the classical registration. Next, the SRR algorithm 
using L1 norm gives the higher PSRN than the SRR algorithm using L2 
norm because L2 norm is more sensitive the outliers such as the 
registration error (and the L2 influence function increases linearly and 
without bound) than L1 norm. Moreover, the SRR algorithm using L2 
norm with the classical registration can not increase the PSNR due to 
noise and registration error. 
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Figure 4.8 : The experimental result of SRR algorithm using the 
proposed Registration (Susie Sequence : The 40th Frame) 
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Figure 4.8 : The experimental result of SRR algorithm using the 
proposed Registration (Susie Sequence : The 40th Frame) (Con.) 
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Figure 4.8 : The experimental result of SRR algorithm using the 
proposed Registration (Susie Sequence : The 40th Frame) (Con.) 
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Figure 4.8 : The experimental result of SRR algorithm using the 
proposed Registration (Susie Sequence : The 40th Frame) (Con.) 

 

4.2.2 Foreman Sequence (The 110th Frame) 

4.2.2.1 Noiseless 

The original HR image is shown in Fig. 4.9 (a-1) and one of 
corrupted LR images is shown in Fig. 4.9 (a-2). The result of L1 
estimator using classical registration, L2 estimator using classical 
registration, L1 estimator using proposed registration and L2 estimator 
using proposed registration are shown in Figs. 4.9(a-3) - 4.9(a-6). 

4.2.2.2 AWGN (Additive White Gaussian Noise) 

This experiment is a 5 AWGN cases at SNR=25, 22.5, 20, 
17.5 and 15dB, respectively and the original HR images are shown in 
Figs. 4.9(b-1) - 4.9(f-1) respectively. The corrupted images at SNR=25, 
22.5, 20, 17.5 and 15dB are showed in Figs. 4.9(b-2) - 4.9(f-2) 
respectively. The result of L1 estimator using classical registration, L2 
estimator using classical registration, L1 estimator using proposed 
registration and L2 estimator using proposed registration are shown in 
Figs. 4.9(b-3) - 4.9(b-6) for SNR=25dB, Figs. 4.9(c-3) - 4.9(c-6) for 
SNR=22.5dB, Figs. 4.9(d-3) - 4.9(d-6) for SNR=20dB , Figs. 4.9(e-3) - 
4.9(e-6) for SNR=17.5dB and Figs. 4.9(f-3) - 4.9(f-6) for SNR=25dB 
respectively. 

4.2.2.3 Poisson Noise 

This experiment is a poison Noise cases. The original HR 
image is shown in Fig. 4.9(g-1) and one of corrupted LR images is shown 
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in Fig. 4.9(g-2). The result of L1 estimator using classical registration, L2 
estimator using classical registration, L1 estimator using proposed 
registration and L2 estimator using proposed registration are shown in 
Figs. 4.9(g-3) - 4.9(g-6). 

4.2.2.4 Salt&Pepper Noise 

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, 
D=0.010 and D=0.015 respectively (D is the noise density) and the 
original HR images are shown in Figs. 4.9(h-1) –4.9(j-1) respectively. 
The corrupted images at D=0.005, D=0.010 and D=0.015 are showed in 
Fig. 4.9(h-2), Fig. 4.9(i-2) and Fig. 4.9(j-2) respectively. The result of L1 
estimator using classical registration, L2 estimator using classical 
registration, L1 estimator using proposed registration and L2 estimator 
using proposed registration are shown in Figs. 4.9(h-3) - 4.9(h-6) for 
D=0.005, Figs. 4.9(i-3) - 4.9(i-6) for D=0.010 and Figs. 4.9(j-3) - 4.9(j-6) 
for D=0.015 respectively. 

4.2.2.5 Speckle Noise 

The last experiment is a 3 Speckle Noise cases for 40th 
frame Foreman sequence at V=0.01, V=0.02 and V=0.03 respectively (V 
is the noise variance) and the original HR images are shown in Fig. 4.9(k-
1) – Fig. 4.9(m-1) respectively. The corrupted images at V=0.01, V=0.02 
and V=0.03 are showed in Fig. 4.9(k-2), Fig. 4.9(l-2) and Fig. 4.9(m-2) 
respectively. The result of L1 estimator using classical registration, L2 
estimator using classical registration, L1 estimator using proposed 
registration and L2 estimator using proposed registration are shown in 
Figs. 4.9(k-3) - 4.9(k-6) for V=0.01, Figs. 4.9(l-3) - 4.9(l-6) for V=0.02 
and Figs. 4.9(m-3) - 4.9(m-6) for V=0.03 respectively. 

From all experimental results of Foreman Sequence (110th 
Frame), the SRR algorithm using L1 norm with the proposed registration 
gives the higher PSRN than the SRR algorithm using L1 norm with the 
classical registration. Moreover, the SRR algorithm using L2 norm with 
the proposed registration gives the higher PSRN than the SRR algorithm 
using L2 norm with the classical registration. Next, the SRR algorithm 
using L1 norm gives the higher PSRN than the SRR algorithm using L2 
norm because L2 norm is more sensitive the outliers such as the 
registration error (and the L2 influence function increases linearly and 
without bound) than L1 norm. Moreover, the SRR algorithm using L2 
norm with the classical registration can not increase the PSNR due to 
noise and registration error.  
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Figure 4.9 : The experimental result of SRR algorithm using the 
proposed Registration (Foreman Sequence : The 110th Frame) 
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Figure 4.9 : The experimental result of SRR algorithm using the 
proposed Registration (Foreman Sequence : The 110th Frame) (Con.) 
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Figure 4.9 : The experimental result of SRR algorithm using the 
proposed Registration (Foreman Sequence : The 110th Frame) (Con.) 
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Figure 4.9 : The experimental result of SRR algorithm using the 
proposed Registration (Foreman Sequence : The 110th Frame) (Con.) 
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4.2.3 Experimental Conclusion on the SRR algorithm using Fast 
Affine Block-Based Registration  

From all experimental results of both Susie Sequence (40th 
Frame) and Foreman Sequence (110th Frame) shown in Fig. 4.9 and Fig. 
4.10 respectively, all comparatively experimental results are concluded as 
follow: 

• For the same norm estimation technique, the SRR algorithm with the 
proposed registration gives the higher PSRN than the SRR algorithm 
with the classical registration. 

• The SRR algorithm using L1 norm with the proposed registration 
gives the highest PSRN. 

• The SRR algorithm using L1 norm gives the higher PSRN than the 
SRR algorithm using L2 norm because L2 norm is more sensitive the 
outliers such as the registration error (and the L2 influence function 
increases linearly and without bound) than L1 norm.  

• The SRR algorithm using L2 norm with the classical registration can 
not increase the PSNR because the registration error is high and L2 
norm is more sensitive the outliers. 

 

 

Figure 4.10 (a) : The experimental result table of SRR algorithm using 
the proposed Registration (Susie : The 40th Frame) 
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Figure 4.10 (b) : The experimental result of SRR algorithm using the 
proposed Registration (Susie : The 40th Frame) 

 

Figure 4.11 (a) : The experimental result table of SRR algorithm using 
the proposed Registration (Foreman : The 110th Frame) 

 

Figure 4.11 (b) : The experimental result of SRR algorithm using the 
proposed Registration (Foreman : The 110th Frame)  
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4.3 Experiments on Robust Estimation Technique for SRR [113-117, 
119-120] 

This section presents the experiments and results obtained by 
the SRR algorithm methods using the proposed robust estimation (Huber, 
Lorentzian and Tukey norm) with Laplacian, Huber-Laplacian and 
Lorentzian-Laplacian and Tukey-Laplacian regularization that are 
calculated by Equation (3.10), (3.13), (3.20), (3.23), (3.30) and (3.33) 
respectively. To demonstrate the performance of the SRR algorithm using 
proposed robust estimation, the results of SRR algorithm using classical 
L2 norm SRR with Laplacian and BTV regularization calculated by 
Equation (2.15) and (2.29) and the results of SRR algorithm using 
classical L1 norm SRR with Laplacian and BTV regularization calculated 
by Equation (2.17) and (2.31) are presented in order to compare the 
performance. 
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Figure 4.12 :  The block diagram of LR image sequence synthesis 
algorithm for the SRR algorithm using proposed robust estimation. 

These experiments are implemented in MATLAB and the 
block size is fixed at 8x8 (or 16x16 for overlapping block). The 40th 
frame Susie sequence in QCIF format (176x144) and the Lena (Standard 
Image : 256x256) are used in these experiments. For the LR image 
sequence generation, we shifted this original HR image by a pixel in the 
vertical direction. Then, to simulate the effect of camera PSF, this shifted 
image was convolved with a symmetric Gaussian low-pass filter of the 
size 3x3 with the standard deviation equal to one. The resulting image 
was subsampled by the factor of 2 in each direction. The same approach 
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with different motion vectors (shifts) in vertical and horizontal directions 
was used to produce four LR images from the original scene. We added 
difference noise model to the resulting LR frames. The LR image 
sequence algorithm is shown in Figure 4.12. For the SRR algorithm, we 
use four LR frames to generate the high resolution image by the different 
SRR methods. 

The criterion for parameter selection in this experiment was 
to choose parameters which produce both most visually appealing results 
and highest PSNR. Therefore, to ensure fairness, each experiment was 
repeated several times with different parameters and the best result of 
each experiment was chosen [97-100]. 

4.3.1 Susie Sequence (The 40th Frame) 

4.3.1.1 Noiseless 

The original HR image is shown in Fig. 4.13(a-1) and one of 
corrupted LR images is shown in Fig. 4.13(a-2). Next, the result of 
implementing the SRR algorithm using L1 estimator with Laplacian 
Regularization, L1 estimator with BTV Regularization, L2 estimator with 
Laplacian Regularization, L2 estimator with BTV Regularization are 
shown in Figs. 4.13(a-3) - 4.13(a-6) respectively. The result of the SRR 
algorithm using Huber estimator with Laplacian Regularization, Huber 
estimator with Huber-Laplacian Regularization, Lorentzian estimator 
with Laplacian Regularization, Lorentzian estimator with Lorentzian-
Laplacian Regularization, Tukey estimator with Laplacian Regularization 
and Tukey estimator with Tukey-Laplacian Regularization are shown in 
Figs. 4.13(a-7) - 4.13(a-12) respectively. 

The results indicates that Huber, Lorentzian and Tukey 
estimator efficiently reconstruct the noiseless image than L1 and L2 
estimator about 1-3 dB respectively.  

4.3.1.2 AWGN (Additive White Gaussian Noise) 

This experiment is a 5 AWGN cases at SNR=25, 22.5, 20, 
17.5 and 15dB respectively and the original HR images are shown in Fig. 
4.13(b-1) - Fig. 4.13(f-1) respectively. The corrupted images at SNR=25, 
22.5, 20, 17.5 and 15dB are showed in Fig. 4.13(b-2) - Fig. 4.13(f-2) 
respectively.  

At the high SNR (SNR=25dB, 22.5dB and 20dB) or low 
noise power, the L2 estimator result (with Laplacian and BTV 
Regularization) give slightly higher PSNR than Huber and Lorentzian 
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estimator result. However, L2, Huber and Lorentzian estimator result 
have higher PSNR than L1 estimator result. At SNR=25dB, 
SNR=22.5dB, SNR=20dB, the result of L1 estimator with Laplacian 
Regularization, L1 estimator with BTV Regularization, L2 estimator with 
Laplacian Regularization, L2 estimator with BTV Regularization, Huber 
estimator with Laplacian Regularization,  Huber estimator with Huber-
Laplacian Regularization,  Lorentzian estimator with Laplacian 
Regularization, Lorentzian estimator with Lorentzian-Laplacian 
Regularization, Tukey estimator with Laplacian Regularization and 
Tukey estimator with Tukey-Laplacian Regularization are shown in Fig. 
4.13(b-3) - Fig. 4.13(b-12), Fig. 4.13(c-3) - Fig. 4.13(c-12) and Fig. 
4.13(d-3) - Fig. 4.13(d-12) respectively.  

At low SNR (SNR=17.5dB and SNR=15dB) or high noise 
power, the Huber and Lorentzian estimator result give the best 
performance than L2 estimator result (with Laplacian and BTV 
Regularization) and  L1 estimator result (with Laplacian and BTV 
Regularization). At SNR=17.5dB and SNR=15dB, the result of L1 
estimator with Laplacian Regularization, L1 estimator with BTV 
Regularization, L2 estimator with Laplacian Regularization, L2 estimator 
with BTV Regularization, Huber estimator with Laplacian 
Regularization,  Huber estimator with Huber-Laplacian Regularization,  
Lorentzian estimator with Laplacian Regularization, Lorentzian estimator 
with Lorentzian-Laplacian Regularization, Tukey estimator with 
Laplacian Regularization and Tukey estimator with Tukey-Laplacian 
Regularization are shown in Fig. 4.13(e-3) - Fig. 4.13(e-12) and  Fig. 
4.13(f-3) - Fig. 4.13(f-12) respectively. 

From the result, the L2 estimator gives the best result for 
SRR estimating at low noise power because the AWGN distributional 
characteristic is a quadratic model that similar to L2 model. However, at 
high noise power, the Huber and Lorentzian estimator give the better 
result than L2 estimator since the L2 norm is very sensitive to outliers 
where the influence function increases linearly and without bound. 

4.3.1.3 Poisson Noise 

The original HR image is shown in Fig. 4.13(g-1) and one of 
corrupted LR images is shown in Fig. 4.13(g-2). The Huber estimator 
(with Huber-Laplacian Regularization) and Lorentzian estimator (with 
Lorentzian-Laplacian Regularization) give the highest PSNR from 
experimental results.  
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The result of L1 estimator with Laplacian Regularization, L1 
estimator with BTV Regularization, L2 estimator with Laplacian 
Regularization, L2 estimator with BTV Regularization, Huber estimator 
with Laplacian Regularization,  Huber estimator with Huber-Laplacian 
Regularization,  Lorentzian estimator with Laplacian Regularization, 
Lorentzian estimator with Lorentzian-Laplacian Regularization, Tukey 
estimator with Laplacian Regularization and Tukey estimator with 
Tukey-Laplacian Regularization are shown in Fig. 4.13(g-3) - Fig. 
4.13(g-12) respectively. 

From the result, the Huber and Lorentzian estimator give the 
best result since the power of noise is slightly high and the distribution of 
noise is not a quadratic model (the L2 estimator can not estimate the 
nonquadratic model effectively).  

4.3.1.4 Salt&Pepper Noise 

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, 
D=0.010 and D=0.015 respectively and the original HR images are 
shown in Fig. 4.13(h-1) – Fig. 4.13(j-1) respectively. The corrupted 
images at D=0.005, D=0.010 and D=0.015 are showed in Fig. 4.13(h-2), 
Fig. 4.13(i-2) and Fig. 4.13(j-2) respectively. The Huber, Lorentzian and 
Tukey estimator results give dramatically higher PSNR than L1 estimator 
result (with Laplacian and BTV Regularization result) and L2 estimator 
result (with Laplacian and BTV Regularization result). 

At D=0.005, D=0.010 and D=0.015, the result of L1 
estimator with Laplacian Regularization, L1 estimator with BTV 
Regularization, L2 estimator with Laplacian Regularization, L2 estimator 
with BTV Regularization, Huber estimator with Laplacian 
Regularization,  Huber estimator with Huber-Laplacian Regularization,  
Lorentzian estimator with Laplacian Regularization, Lorentzian estimator 
with Lorentzian-Laplacian Regularization, Tukey estimator with 
Laplacian Regularization and Tukey estimator with Tukey-Laplacian 
Regularization are shown in Fig. 4.13(h-3) - Fig. 4.13(h-12), Fig. 4.13(i-
3) - Fig. 4.13(i-12) and Fig. 4.13(j-3) - Fig. 4.13(j-12) respectively. 

From the results, the Huber, Lorentzian and Tukey estimator 
outperform the other estimators when the image is corrupted by 
Salt&Pepper Noise about 4-5 dB. The Huber, Lorentzian and Tukey 
estimators give the better result for SRR estimating than L1 or L2 
estimator because these robust estimators are designed to be robust and 
reject outliers. Their norms are more forgiving outliers; that is, the norm 
should increases less rapidly than L2. 
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4.3.1.5 Speckle Noise 

The last experiment is a 3 Speckle Noise cases for 40th 
frame Susie sequence at V=0.01, V=0.02 and V=0.03 respectively. The 
original HR images are shown in Fig. 4.13(k-1) – Fig. 4.13(m-1) 
respectively. The corrupted images at V=0.01, V=0.02 and V=0.03 are 
shown in Fig. 4.13(k-2), Fig. 4.13(l-2) and Fig. 4.13(m-2) respectively.  

At low noise power (V=0.01), the L2 estimator result (with 
Laplacian and BTV Regularization) give slightly higher PSNR than 
Huber and Lorentzian estimator results. However, L2, Huber and 
Lorentzian estimator result have higher PSNR than L1 estimator result 
(with Laplacian and BTV Regularization). The result of L1 estimator 
with Laplacian Regularization, L1 estimator with BTV Regularization, 
L2 estimator with Laplacian Regularization, L2 estimator with BTV 
Regularization, Huber estimator with Laplacian Regularization,  Huber 
estimator with Huber-Laplacian Regularization,  Lorentzian estimator 
with Laplacian Regularization, Lorentzian estimator with Lorentzian-
Laplacian Regularization, Tukey estimator with Laplacian Regularization 
and Tukey estimator with Tukey-Laplacian Regularization are shown in 
Fig. 4.13(k-3) - Fig. 4.13(k-12) respectively. 

At high noise power (V=0.02 and V=0.03), the Huber and 
Lorentzian estimator result give the best performance than L2 estimator 
result (with Laplacian and BTV Regularization), L1 estimator result (with 
Laplacian and BTV Regularization). At V=0.02 and V=0.03, the result of 
L1 estimator with Laplacian Regularization, L1 estimator with BTV 
Regularization, L2 estimator with Laplacian Regularization, L2 estimator 
with BTV Regularization, Huber estimator with Laplacian 
Regularization,  Huber estimator with Huber-Laplacian Regularization,  
Lorentzian estimator with Laplacian Regularization, Lorentzian estimator 
with Lorentzian-Laplacian Regularization, Tukey estimator with 
Laplacian Regularization and Tukey estimator with Tukey-Laplacian 
Regularization are shown in Fig. 4.13(l-3) - Fig. 4.13(l-12) and  Fig. 
4.13(m-3) - Fig. 4.13(m-12) respectively. 

From the results, the Huber and Lorentzian estimator 
efficiently reconstruct the image that is corrupted by Speckle Noise at 
high noise power. It performs better than L1 and L2 estimator because 
Huber and Lorentzian estimator is more robust against the high power 
outliers than L1 and L2 estimators. 
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(a-1, ,m-1)
Original HR Image

(Frame 40)

…

(a-2)
Corrupted LR Image

(Noiseless)
(PSNR=32.1687dB) ( )

(a-3) L1 SRR Image
with Lap Reg.

(PSNR=32.1687dB)
1.00, 0β λ= = ( )

(a-5) L2 SRR Image
with Lap Reg.

(PSNR=34.2000dB)
1.00, 0β λ= =( )

(a-4) L1 SRR Image
with BTV Reg.

(PSNR=32.1687dB)
1, 0, 1, 0.7Pβ λ α= = = = ( )

(a-6) L2 SRR Image
with BTV Reg.

(PSNR=34.2000dB)
1, 0, 1, 0.7Pβ λ α= = = =

( )

(a-9) Lor. SRR Image
with Lap Reg.

(PSNR=35.2853dB)
0.25, 0, 3Tβ λ= = = ( )

(a-10) Lor. SRR Image
with Lor-Lap Reg.

(PSNR=35.2853dB)

0.25, 0, 1, 1gT Tβ λ= = = =( )

(a-7) Huber SRR Image
with Lap Reg.

(PSNR=35.1436dB)
1, 0, 3Tβ λ= = = ( )

(a-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=35.1436dB)

1, 0, 3, 1gT Tβ λ= = = =

(b-2)
Corrupted LR Image
(AWGN:SNR=25dB)
(PSNR=30.1214dB) ( )

(b-3) L1 SRR Image
with Lap Reg.

(PSNR=30.3719dB)
0.5, 1β λ= = ( )

(b-5) L2 SRR Image
with Lap Reg.

(PSNR=32.3688dB)
0.5, 1β λ= =

( )

(b-9) Lor. SRR Image
with Lap Reg.

(PSNR=32.2341dB)
0.5, 1, 9Tβ λ= = = ( )

(b-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=32.3591dB)

0.5, 0.75, 9, 3gT Tβ λ= = = =

( )

(b-4) L1 SRR Image
with BTV Reg.

(PSNR=30.3295dB)
0.5, 0.4, 2, 0.7Pβ λ α= = = = ( )

(b-6) L2 SRR Image
with BTV Reg.

(PSNR=32.1643dB)
0.5, 0.4, 1, 0.7Pβ λ α= = = =

( )

(a-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=34.7056dB)

1, 0, 15, 1gT Tβ λ= = = =

( )

(b-7) Huber SRR Image
with Lap Reg.

(PSNR=32.3936dB)
0.5, 1, 19Tβ λ= = = ( )

(b-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=32.3936dB)

0.5, 1, 19, 19gT Tβ λ= = = = ( )

(b-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=31.3532dB)

0.5, 1, 15, 19gT Tβ λ= = = =

( )

(a-11) Tukey SRR Image
with Lap Reg.

(PSNR=34.7056dB)
1, 0, 15Tβ λ= = =

( )

(b-11) Tukey SRR Image
with Lap Reg.

(PSNR=31.3532dB)
0.5, 1, 15Tβ λ= = =

 

Figure 4.13 :  The experimental result of SRR algorithm using the 
proposed robust estimation technique (Susie Sequence : The 40th Frame) 
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(d-2)
Corrupted LR Image
(AWGN:SNR=20dB)
(PSNR=27.5316dB)

(c-2)
Corrupted LR Image

(AWGN:SNR=22.5dB)
(PSNR=29.0233dB)

( )

(d-3) L1 SRR Image
with Lap Reg.

(PSNR=28.7003dB)
0.50, 1.0β λ= = ( )

(d-5) L2 SRR Image
with Lap Reg.

(PSNR=30.6898dB)
0.5, 1β λ= =

( )

(d-9) Lor. SRR Image
with Lap Reg.

(PSNR=30.5472dB)
0.5, 1, 9Tβ λ= = =

( )

(c-3) L1 SRR Image
with Lap Reg.

(PSNR=29.6481dB)
0.50, 1.0β λ= = ( )

(c-5) L2 SRR Image
with Lap Reg.

(PSNR=31.6384dB)
1.00, 1.0β λ= =

( )

(c-9) Lor. SRR Image
with Lap Reg.

(PSNR=31.4751dB)
0.5, 1, 9Tβ λ= = = ( )

(c-10) Lor. SRR Image
with Lor.-Lap Reg

(PSNR=31.6169dB)

0.5, 1, 9, 3gT Tβ λ= = = =

( )

(d-10) Lor. SRR Image
with Lor.-Lap Reg

(PSNR=30.7486dB)

0.5, 1, 9, 5gT Tβ λ= = = =

( )

(c-4) L1 SRR Image
with BTV Reg.

(PSNR=29.5322dB)
0.5, 0.4, 1, 0.7Pβ λ α= = = = ( )

(c-6) L2 SRR Image
with BTV Reg.

(PSNR=31.5935dB)
0.5, 0.4, 1, 0.7Pβ λ α= = = =

( )

(d-4) L1 SRR Image
with BTV Reg.

(PSNR=28.9031dB)
0.5, 0.4, 2, 0.7Pβ λ α= = = = ( )

(d-6) L2 SRR Image
with BTV Reg.

(PSNR=31.0056dB)
0.5, 0.3, 2, 0.7Pβ λ α= = = =

( )

(c-7) Huber SRR Image
with Lap Reg.

(PSNR=31.6806dB)
0.5, 1, 19Tβ λ= = = ( )

(c-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=31.6806dB)

0.5, 1, 19, 19gT Tβ λ= = = = ( )

(c-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=30.4980dB)

0.5, 1, 15, 19gT Tβ λ= = = =( )

(c-11) Tukey SRR Image
with Lap Reg.

(PSNR=30.4980dB)
0.5, 1, 15Tβ λ= = =

( )

(d-7) Huber SRR Image
with Lap Reg.

(PSNR=30.7518dB)
0.5, 1, 5Tβ λ= = = ( )

(d-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=30.7989dB)

0.5, 1, 5, 3gT Tβ λ= = = = ( )

(d-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=29.3590dB)

0.5, 1, 15, 19gT Tβ λ= = = =( )

(d-11) Tukey SRR Image
with Lap Reg.

(PSNR=29.3590dB)
0.5, 1, 15Tβ λ= = =

 

Figure 4.13 :  The experimental result of SRR algorithm using the 
proposed robust estimation technique (Susie Sequence : The 40th Frame) 

(Con.) 

 



 86

(e-2)
Corrupted LR Image

(AWGN:SNR=17.5dB)
(PSNR=25.7332dB) ( )

(e-3) L1 SRR Image
with Lap Reg.

(PSNR=27.5771dB)
1, 1β λ= = ( )

(e-4) L1 SRR Image
with BTV Reg.

(PSNR=27.7575dB)
0.5, 0.5, 1, 0.7Pβ λ α= = = =

( )

(e-9) Lor. SRR Image
with Lap Reg.

(PSNR=29.4712dB)
0.5, 1, 5Tβ λ= = = ( )

(e-10) Lor. SRR Image
with Lor.-Lap Reg

(PSNR=29.6910dB)

0.5, 1, 5, 5gT Tβ λ= = = =

( )

(e-5) L2 SRR Image
with Lap Reg.

(PSNR=29.3375dB)
0.5, 1β λ= = ( )

(e-6) L2 SRR Image
with BTV Reg.

(PSNR=29.4085dB)
0.5, 0.5, 1, 0.7Pβ λ α= = = =

(f-2)
Corrupted LR Image
(AWGN:SNR=15dB)
(PSNR=23.7086dB) ( )

(f-3) L1 SRR Image
with Lap Reg.

(PSNR=26.2641dB)
0.5, 1β λ= = ( )

(f-5) L2 SRR Image
with Lap Reg.

(PSNR=27.6671dB)
0.5, 1β λ= =

( )

(f-9) Lor. SRR Image
with Lap Reg.

(PSNR=28.1516dB)
0.5, 1, 5Tβ λ= = = ( )

(f-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=28.4389dB)

0.5, 1, 5, 9gT Tβ λ= = = =

( )

(f-4) L1 SRR Image
with BTV Reg.

(PSNR=26.9064dB)
0.5, 0.8, 1, 0.7Pβ λ α= = = = ( )

(f-6) L2 SRR Image
with BTV Reg.

(PSNR=27.8418dB)
0.5, 0.3, 2, 0.7Pβ λ α= = = =

( )

(e-7) Huber SRR Image
with Lap Reg.

(PSNR=30.0448dB)
1, 0.5, 1Tβ λ= = = ( )

(e-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=30.1448dB)

1, 0.75, 1, 1gT Tβ λ= = = = ( )

(e-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=28.6044dB)

0.5, 1, 1, 19gT Tβ λ= = = =( )

(e-11) Tukey SRR Image
with Lap Reg.

(PSNR=28.6044dB)
0.5, 1, 1Tβ λ= = =

( )

(f-7) Huber SRR Image
with Lap Reg.

(PSNR=29.1977dB)
1, 0.75, 1Tβ λ= = = ( )

(f-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=29.2958dB)

1, 0.75, 1, 1gT Tβ λ= = = = ( )

(f-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=27.6932dB)

0.5, 1, 1, 19gT Tβ λ= = = =( )

(f-11) Tukey SRR Image
with Lap Reg.

(PSNR=27.6932dB)
0.5, 1, 1Tβ λ= = =

 

Figure 4.13 :  The experimental result of SRR algorithm using the 
proposed robust estimation technique (Susie Sequence : The 40th Frame) 

(Con.) 
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(g-2)
Corrupted LR Image

(Poisson)
(PSNR=27.9071dB) ( )

(g-3) L1 SRR Image
with Lap Reg.

(PSNR=28.9197dB)
1, 1β λ= = ( )

(g-5) L2 SRR Image
with Lap Reg.

(PSNR=30.7634dB)
0.5, 1β λ= =

( )

(g-9) Lor. SRR Image
with Lap Reg.

(PSNR=30.6934dB)
0.5, 1, 9Tβ λ= = = ( )

(g-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=30.8829dB)

0.5, 1, 5, 9gT Tβ λ= = = =

( )

(g-4) L1 SRR Image
with BTV Reg.

(PSNR=29.1201dB)
0.5, 4.0, 2, 0.7Pβ λ α= = = = ( )

(g-6) L2 SRR Image
with BTV Reg.

(PSNR=30.8631dB)
0.5, 0.5, 1, 0.7Pβ λ α= = = =

(h-2)
Corrupted LR Image

(S&P:D=0.005)
(PSNR=29.0649dB) ( )

(h-3) L1 SRR Image
with Lap Reg.

(PSNR=29.5041dB)
1, 1β λ= = ( )

(h-5) L2 SRR Image
with Lap Reg.

(PSNR=31.5021dB)
0.5, 1β λ= =( )

(h-4) L1 SRR Image
with BTV Reg.

(PSNR=29.0649dB)
1, 0.5, 2, 0.7Pβ λ α= = = = ( )

(h-6) L2 SRR Image
with BTV Reg.

(PSNR=30.4617dB)
0.5, 0.4, 1, 0.7Pβ λ α= = = =

( )

(h-9) Lor. SRR Image
with Lap Reg.

(PSNR=34.7155dB)
1, 0.25, 9Tβ λ= = = ( )

(h-10) Lor. SRR Image
with Lor-Lap Reg.

(PSNR=34.7921dB)

1, 0.25, 9, 3gT Tβ λ= = = =( )

(h-7) Huber SRR Image
with Lap Reg.

(PSNR=34.4428dB)
0.5, 0.25, 5Tβ λ= = = ( )

(h-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=34.5030dB)

1, 0.25, 9, 3gT Tβ λ= = = = ( )

(h-11) Tukey SRR Image
with Lap Reg.

(PSNR=34.5282dB)
1, 0.25, 15Tβ λ= = = ( )

(h-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=34.5282dB)

1, 0.25, 15, 19gT Tβ λ= = = =

( )

(g-7) Huber SRR Image
with Lap Reg.

(PSNR=30.8496dB)
0.5, 1, 9Tβ λ= = = ( )

(g-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=30.9016dB)

0.5, 1, 5, 3gT Tβ λ= = = = ( )

(g-11) Tukey SRR Image
with Lap Reg.

(PSNR=29.5778dB)
0.5, 1, 15Tβ λ= = = ( )

(g-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=29.5778dB)

0.5, 1, 15, 19gT Tβ λ= = = =

 

Figure 4.13 :  The experimental result of SRR algorithm using the 
proposed robust estimation technique (Susie Sequence : The 40th Frame) 

(Con.) 

 



 88

(i-2)
(S&P:D=0.010)

Corrupted LR Image
(PSNR=26.4446dB) ( )

(i-3) L1 SRR Image
with Lap Reg.

(PSNR=27.7593dB)
1, 1β λ= = ( )

(i-4) L1 SRR Image
with BTV Reg.

(PSNR=26.4446dB)
1, 0.5, 1, 0.7Pβ λ α= = = =

( )

(i-9) Lor. SRR Image
with Lap Reg.

(PSNR=34.7194dB)
1, 0.25, 5Tβ λ= = =

( )

(i-5) L2 SRR Image
with Lap Reg.

(PSNR=29.8395dB)
0.5, 1β λ= = ( )

(i-6) L2 SRR Image
with BTV Reg.

(PSNR=28.0337dB)
0.5, 0.4, 1, 0.7Pβ λ α= = = =

( )

(i-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=34.7783dB)

1, 0.25, 9, 3gT Tβ λ= = = =

(j-2)
Corrupted LR Image

(S&P:D=0.015)
(PSNR=25.276dB) ( )

(j-3) L1 SRR Image
with Lap Reg.

(PSNR=26.9247dB)
1.00, 1.0β λ= = ( )

(j-5) L2 SRR Image
with Lap Reg.

(PSNR=28.7614dB)
0.5, 1β λ= =

( )

(j-9) Lor. SRR Image
with Lap Reg.

(PSNR=34.6991dB)
1, 0.25, 5Tβ λ= = =

( )

(j-4) L1 SRR Image
with BTV Reg.

(PSNR=25.276dB)
1, 0.5, 1, 0.7Pβ λ α= = = = ( )

(j-6) L2 SRR Image
with BTV Reg.

(PSNR=26.8671dB)
0.5, 0.4, 1, 0.7Pβ λ α= = = =

( )

(j-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=34.7001dB)

1, 0.25, 9, 3gT Tβ λ= = = =( )

(j-7) Huber SRR Image
with Lap Reg.

(PSNR=34.3620dB)
0.5, 0.25, 5Tβ λ= = = ( )

(j-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=34.5041dB)

1, 0.25, 5, 3gT Tβ λ= = = = ( )

(j-11) Tukey SRR Image
with Lap Reg.

(PSNR=34.5018dB)
1, 0.25, 15Tβ λ= = = ( )

(j-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=34.5018dB)

1, 0.25, 15, 19gT Tβ λ= = = =

( )

(i-7) Huber SRR Image
with Lap Reg.

(PSNR=34.4171dB)
1, 0.25, 5Tβ λ= = = ( )

(i-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=34.4591dB)

1, 0.25, 9, 3gT Tβ λ= = = = ( )

(i-11) Tukey SRR Image
with Lap Reg.

(PSNR=34.5169dB)
1, 0.25, 15Tβ λ= = = ( )

(i-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=34.5169dB)

1, 0.25, 15, 19gT Tβ λ= = = =

 

Figure 4.13 :  The experimental result of SRR algorithm using the 
proposed robust estimation technique (Susie Sequence : The 40th Frame) 

(Con.) 
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(k-2)
(Speckle:V=0.01)

Corrupted LR Image
(PSNR=27.6166dB) ( )

(k-3) L1 SRR Image
with Lap Reg.

(PSNR=28.8289dB)
0.5, 1β λ= = ( )

(k-5) L2 SRR Image
with Lap Reg.

(PSNR=30.6139dB)
0.5, 1β λ= =

( )

(k-9) Lor. SRR Image
with Lap Reg.

(PSNR=29.8499dB)
0.5, 1, 9Tβ λ= = = ( )

(k-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=30.1287dB)

0.5, 1, 9, 5gT Tβ λ= = = =

(l-2)
(Speckle:V=0.02)

Corrupted LR Image
(PSNR=25.3563dB) ( )

(l-3) L1 SRR Image
with Lap Reg.

(PSNR=27.5527dB)
0.5, 1β λ= = ( )

(l-5) L2 SRR Image
with Lap Reg.

(PSNR=28.9409dB)
0.5, 1β λ= =

( )

(l-9) Lor. SRR Image
with Lap Reg.

(PSNR=28.5018dB)
0.5, 1, 1Tβ λ= = = ( )

(l-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=28.9779dB)

0.5, 1, 1, 3gT Tβ λ= = = =

( )

(k-4) L1 SRR Image
with BTV Reg.

(PSNR=28.8656dB)
0.5, 0.7, 1, 0.7Pβ λ α= = = =

( )

(l-4) L1 SRR Image
with BTV Reg.

(PSNR=27.8283dB)
0.5, 0.6, 1, 0.7Pβ λ α= = = =

( )

(k-6) L2 SRR Image
with BTV Reg.

(PSNR=30.6130dB)
0.5, 0.5, 1, 0.7Pβ λ α= = = =

( )

(l-6) L2 SRR Image
with BTV Reg.

(PSNR=28.8859dB)
0.5, 0.5, 1, 0.7Pβ λ α= = = =

( )

(l-7) Huber SRR Image
with Lap Reg.

(PSNR=29.3749dB)
1, 0.75, 1Tβ λ= = = ( )

(l-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=29.7165dB)

0.5, 1, 1, 1gT Tβ λ= = = = ( )

(l-11) Tukey SRR Image
with Lap Reg.

(PSNR=28.4824dB)
0.5, 1, 1Tβ λ= = = ( )

(l-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=28.4824dB)

0.5, 1, 1, 19gT Tβ λ= = = =

( )

(k-7) Huber SRR Image
with Lap Reg.

(PSNR=30.4619dB)
0.5, 1, 19Tβ λ= = = ( )

(k-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=30.4693dB)

0.5, 1, 19, 9gT Tβ λ= = = = ( )

(k-11) Tukey SRR Image
with Lap Reg.

(PSNR=29.3607dB)
0.5, 1, 1Tβ λ= = = ( )

(k-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=29.6337dB)

0.5, 0.75, 3, 15gT Tβ λ= = = =

 

Figure 4.13 :  The experimental result of SRR algorithm using the 
proposed robust estimation technique (Susie Sequence : The 40th Frame) 

(Con.) 
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(m-2)
(Speckle:V=0.03)

Corrupted LR Image
(PSNR=24.0403dB) ( )

(m-3) L1 SRR Image
with Lap Reg.

(PSNR=26.8165dB)
0.5, 1β λ= = ( )

(m-5) L2 SRR Image
with Lap Reg.

(PSNR=27.7654dB)
0.5, 1β λ= =

( )

(m-7) Lor. SRR Image
with Lap Reg.

(PSNR=27.9468dB)
0.5, 1, 1Tβ λ= = = ( )

(m-8) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=28.4418dB)

0.5, 1, 1, 3gT Tβ λ= = = =

( )

(m-6) L2 SRR Image
with BTV Reg.

(PSNR=27.3751dB)
0.5, 0.4, 1, 0.7Pβ λ α= = = =( )

(m-4) L1 SRR Image
with BTV Reg.

(PSNR=27.2429dB)
0.50, 0.5, 1, 0.7Pβ λ α= = = =

( )

(m-7) Huber SRR Image
with Lap Reg.

(PSNR=28.6900dB)
0.5, 1, 1Tβ λ= = = ( )

(m-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=28.9821dB)

1, 1, 1, 1gT Tβ λ= = = = ( )

(m-11) Tukey SRR Image
with Lap Reg.

(PSNR=27.9699dB)
0.5, 1, 1Tβ λ= = = ( )

(m-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=27.9699dB)

0.5, 1, 1, 19gT Tβ λ= = = =

 

Figure 4.13 :  The experimental result of SRR algorithm using the 
proposed robust estimation technique (Susie Sequence : The 40th Frame) 

(Con.) 
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4.3.2 Lena : (The Standard Image) 

4.3.2.1 Noiseless 

The original HR image is shown in Fig. 4.14(a-1) and one of 
corrupted LR images is shown in Fig. 4.14(a-2). Next, the result of 
implementing the SRR algorithm using L1 estimator with Laplacian 
Regularization, L1 estimator with BTV Regularization, L2 estimator with 
Laplacian Regularization, L2 estimator with BTV Regularization are 
shown in Fig. 4.14(a-3) - Fig. 4.14(a-6) respectively. The result of the 
SRR algorithm using Huber estimator with Laplacian Regularization, 
Huber estimator with Huber-Laplacian Regularization, Lorentzian 
estimator with Laplacian Regularization,  Lorentzian estimator with 
Lorentzian-Laplacian Regularization, Tukey estimator with Laplacian 
Regularization and Tukey estimator with Tukey-Laplacian Regularization 
are shown in Fig. 4.14(a-7) - Fig. 4.14(a-12) respectively. 

From the results, Huber, Lorentzian and Tukey estimator 
give the better reconstruction of the noiseless image than L1 and L2 
estimator approximately 1-3 dB higher PSNR.  

4.3.2.2 AWGN (Additive White Gaussian Noise) 

This experiment is a 5 AWGN cases at SNR=25, 22.5, 20, 
17.5 and 15dB respectively and the original HR images are shown in Fig. 
4.14(b-1) - Fig. 4.14(f-1) respectively. The corrupted images at SNR=25, 
22.5, 20, 17.5 and 15dB are showed in Fig. 4.14(b-2) - Fig. 4.14(f-2) 
respectively.  

From the result, the Huber and Lorentzian estimator result 
give the best performance than L2 estimator result (with Laplacian and 
BTV Regularization) and L1 estimator result (with Laplacian and BTV 
Regularization). At SNR=25dB, SNR=22.5dB, SNR=20dB, 
SNR=17.5dB and SNR=15dB, the result of L1 estimator with Laplacian 
Regularization, L1 estimator with BTV Regularization, L2 estimator with 
Laplacian Regularization, L2 estimator with BTV Regularization, Huber 
estimator with Laplacian Regularization,  Huber estimator with Huber-
Laplacian Regularization,  Lorentzian estimator with Laplacian 
Regularization, Lorentzian estimator with Lorentzian-Laplacian 
Regularization, Tukey estimator with Laplacian Regularization and 
Tukey estimator with Tukey-Laplacian Regularization are shown in Fig. 
4.14(b-3) - Fig. 4.14(b-12), Fig. 4.14(c-3) - Fig. 4.14(c-12), Fig. 4.14(d-3) 
- Fig. 4.14(d-12), Fig. 4.14(e-3) - Fig. 4.14(e-12) and  Fig. 4.14(f-3) - Fig. 
4.14(f-12) respectively. 
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From the result, the Huber and Lorentzian estimator will 
give the better result than L2 estimator since the L2 norm is very 
sensitive to outliers. The influence function of L2 increases linearly and 
without bound. 

4.3.2.3 Poisson Noise 

The original HR image is shown in Fig. 4.14(g-1) and one of 
corrupted LR images is shown in Fig. 4.14(g-2). The Huber estimator 
(with Huber-Laplacian Regularization) and Lorentzian estimator (with 
Lorentzian-Laplacian Regularization) give the highest PSNR from 
experimental results.  

The result of L1 estimator with Laplacian Regularization, L1 
estimator with BTV Regularization, L2 estimator with Laplacian 
Regularization, L2 estimator with BTV Regularization, Huber estimator 
with Laplacian Regularization,  Huber estimator with Huber-Laplacian 
Regularization,  Lorentzian estimator with Laplacian Regularization, 
Lorentzian estimator with Lorentzian-Laplacian Regularization, Tukey 
estimator with Laplacian Regularization and Tukey estimator with 
Tukey-Laplacian Regularization are shown in Fig. 4.14(g-3) - Fig. 
4.14(g-12) respectively. 

From the result, the Huber and Lorentzian estimator give the 
best result than L1 and L2 estimator since the power of noise is slight 
high and the distribution of noise is not quadratic model which the L2 
estimator can not estimate the effectively.  

4.3.2.4 Salt&Pepper Noise 

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, 
D=0.010 and D=0.015 respectively and the original HR images are 
shown in Fig. 4.14(h-1) – Fig. 4.14(j-1) respectively. The corrupted 
images at D=0.005, D=0.010 and D=0.015 are showed in Fig. 4.14(h-2), 
Fig. 4.14(i-2) and Fig. 4.14(j-2) respectively. The Huber, Lorentzian and 
Tukey estimator results give dramatically higher PSNR than L1 estimator 
result (with Laplacian and BTV Regularization result) and L2 estimator 
result (with Laplacian and BTV Regularization result). 

At D=0.005, D=0.010 and D=0.015, the result of L1 
estimator with Laplacian Regularization, L1 estimator with BTV 
Regularization, L2 estimator with Laplacian Regularization, L2 estimator 
with BTV Regularization, Huber estimator with Laplacian 
Regularization,  Huber estimator with Huber-Laplacian Regularization,  
Lorentzian estimator with Laplacian Regularization, Lorentzian estimator 
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with Lorentzian-Laplacian Regularization, Tukey estimator with 
Laplacian Regularization and Tukey estimator with Tukey-Laplacian 
Regularization are shown in Fig. 4.14(h-3) - Fig. 4.14(h-12), Fig. 4.14(i-
3) - Fig. 4.14(i-12) and Fig. 4.14(j-3) - Fig. 4.14(j-12) respectively. 

From the results, the Huber, Lorentzian and Tukey estimator 
give the far better reconstruction than L1 and L2 estimator with 
approximately 4-5 dB higher PSNR. The Huber, Lorentzian and Tukey 
estimators give the better result for SRR estimating than L1 or L2 
estimator because these robust estimators are designed to be robust and 
reject outliers. The norms are more forgiving on outliers; that is, they 
should increase less rapidly than L2. 

4.3.2.5 Speckle Noise 

The last experiment is a 2 Speckle Noise cases for 40th 
frame Susie sequence at V=0.03 and V=0.05 respectively and the original 
HR images are shown in Fig. 4.14(k-1) – Fig. 4.14(l-1) respectively. The 
corrupted images at V=0.03 and V=0.05 are showed in Fig. 4.14(k-2), 
and Fig. 4.14(l-2) respectively.  

At low noise power (V=0.03), the L2 estimator result (with 
Laplacian and BTV Regularization) give slightly higher PSNR than 
Huber and Lorentzian estimator results. However, L2, Huber and 
Lorentzian estimator result have higher PSNR than L1 estimator result 
(with Laplacian and BTV Regularization). The result of L1 estimator 
with Laplacian Regularization, L1 estimator with BTV Regularization, 
L2 estimator with Laplacian Regularization, L2 estimator with BTV 
Regularization, Huber estimator with Laplacian Regularization,  Huber 
estimator with Huber-Laplacian Regularization,  Lorentzian estimator 
with Laplacian Regularization, Lorentzian estimator with Lorentzian-
Laplacian Regularization, Tukey estimator with Laplacian Regularization 
and Tukey estimator with Tukey-Laplacian Regularization are shown in 
Fig. 4.14(k-3) - Fig. 4.14(k-12) respectively. 

At high noise power (V=0.05), the Huber and Lorentzian 
estimator result give the better performance than L2 estimator result (with 
Laplacian and BTV Regularization), L1 estimator result (with Laplacian 
and BTV Regularization). The result of L1 estimator with Laplacian 
Regularization, L1 estimator with BTV Regularization, L2 estimator with 
Laplacian Regularization, L2 estimator with BTV Regularization, Huber 
estimator with Laplacian Regularization,  Huber estimator with Huber-
Laplacian Regularization,  Lorentzian estimator with Laplacian 
Regularization, Lorentzian estimator with Lorentzian-Laplacian 
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Regularization, Tukey estimator with Laplacian Regularization and 
Tukey estimator with Tukey-Laplacian Regularization are shown in Fig. 
4.14(l-3) - Fig. 4.14(l-12). 

From the results, the Huber and Lorentzian estimator 
efficiently reconstruct the image that is corrupted by Speckle Noise at 
high noise power. It was better than L1 and L2 estimator because Huber 
and Lorentzian estimator is more robust for estimation to the high power 
outlier than L1 and L2 estimator. 
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(a-1, ,l-1)
Original HR Image

…

(a-2)
Corrupted LR Image

(Noiseless)
(PSNR=28.8634dB) ( )

(a-3) L1 SRR Image
with Lap Reg.

(PSNR=28.8634dB)
1.00, 0β λ= = ( )

(a-5) L2 SRR Image
with Lap Reg.

(PSNR=30.8553dB)
1.00, 0β λ= =( )

(a-4) L1 SRR Image
with BTV Reg.

(PSNR=28.8634dB)
1, 0, 1, 0.7Pβ λ α= = = = ( )

(a-6) L2 SRR Image
with BTV Reg.

(PSNR=30.8553dB)
1, 0, 1, 0.7Pβ λ α= = = =

(b-2)
Corrupted LR Image
(AWGN:SNR=25dB)
(PSNR=27.8884dB) ( )

(b-3) L1 SRR Image
with Lap Reg.

(PSNR=27.9490dB)
0.5, 1β λ= = ( )

(b-5) L2 SRR Image
with Lap Reg.

(PSNR=29.6579dB)
0.5, 0.5β λ= =( )

(b-4) L1 SRR Image
with BTV Reg.

(PSNR=27.8884dB)
0.5, 0.25, 1, 0.7Pβ λ α= = = = ( )

(b-6) L2 SRR Image
with BTV Reg.

(PSNR=29.5800dB)
0.5, 0.25, 1, 0.7Pβ λ α= = = =

( )

(a-9) Lor. SRR Image
with Lap Reg.

(PSNR=31.9565dB)
0.25, 0, 3Tβ λ= = = ( )

(a-10) Lor. SRR Image
with Lor-Lap Reg.

(PSNR=31.9565dB)

0.25, 0, 3, 1gT Tβ λ= = = =

( )

(b-9) Lor. SRR Image
with Lap Reg.

(PSNR=29.7359dB)
1, 0.5, 15Tβ λ= = = ( )

(b-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=29.7712dB)

0.5, 0.5, 19, 5gT Tβ λ= = = =( )

(b-7) Huber SRR Image
with Lap Reg.

(PSNR=29.7224dB)
0.5, 0.5, 19Tβ λ= = = ( )

(b-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=29.8030dB)

0.5, 0.5, 19, 5gT Tβ λ= = = = ( )

(b-11) Tukey SRR Image
with Lap Reg.

(PSNR=29.1331dB)
0.5, 0.5, 19Tβ λ= = = ( )

(b-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=29.2321dB)

1, 0.5, 19, 9gT Tβ λ= = = =

( )

(a-7) Huber SRR Image
with Lap Reg.

(PSNR=32.0186dB)
1, 0, 1Tβ λ= = = ( )

(a-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=32.0186dB)

1, 0, 1, 1gT Tβ λ= = = = ( )

(a-11) Tukey SRR Image
with Lap Reg.

(PSNR=31.5889dB)
1, 0, 19Tβ λ= = = ( )

(a-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=31.5889dB)

1, 0, 19, 19gT Tβ λ= = = =

 

Figure 4.14 : The experimental result of SRR algorithm using the 
proposed robust estimation technique (Lena : The Standard Image) 
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(c-2)
Corrupted LR Image

(AWGN:SNR=22.5dB)
(PSNR=27.2417dB) ( )

(c-3) L1 SRR Image
with Lap Reg.

(PSNR=27.4918dB)
0.50, 1β λ= = ( )

(c-5) L2 SRR Image
with Lap Reg.

(PSNR=29.1611dB)
0.5, 1β λ= =

( )

(c-9) Lor. SRR Image
with Lap Reg.

(PSNR=29.1927dB)
0.5, 1, 19Tβ λ= = = ( )

(c-10) Lor. SRR Image
with Lor.-Lap Reg

(PSNR=29.2183dB)

0.5, 0.75, 19, 9gT Tβ λ= = = =

( )

(c-4) L1 SRR Image
with BTV Reg.

(PSNR=27.3968dB)
0.5, 0.75, 1, 0.7Pβ λ α= = = = ( )

(c-6) L2 SRR Image
with BTV Reg.

(PSNR=29.0775dB)
0.5, 0.25, 1, 0.7Pβ λ α= = = =

( )

(c-7) Huber SRR Image
with Lap Reg.

(PSNR=29.1935dB)
0.5, 0.75, 19Tβ λ= = = ( )

(c-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=29.1956dB)

0.5, 0.75, 19, 7gT Tβ λ= = = = ( )

(c-11) Tukey SRR Image
with Lap Reg.

(PSNR=28.4460dB)
0.5, 0.75, 19Tβ λ= = = ( )

(c-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=28.4797dB)

0.5, 0.5, 19, 15gT Tβ λ= = = =

(d-2)
Corrupted LR Image
(AWGN:SNR=20dB)
(PSNR=26.2188dB) ( )

(d-3) L1 SRR Image
with Lap Reg.

(PSNR=26.7854dB)
0.50, 1.0β λ= = ( )

(d-5) L2 SRR Image
with Lap Reg.

(PSNR=28.6024dB)
0.5, 1β λ= =

( )

(d-9) Lor. SRR Image
with Lap Reg.

(PSNR=28.5610dB)
0.5, 1, 19Tβ λ= = = ( )

(d-10) Lor. SRR Image
with Lor.-Lap Reg

(PSNR=28.6383dB)

0.5, 1, 19, 5gT Tβ λ= = = =

( )

(d-4) L1 SRR Image
with BTV Reg.

(PSNR=26.7197dB)
0.5, 0.8, 1, 0.7Pβ λ α= = = = ( )

(d-6) L2 SRR Image
with BTV Reg.

(PSNR=28.5195dB)
0.5, 0.5, 1, 0.7Pβ λ α= = = =

( )

(d-7) Huber SRR Image
with Lap Reg.

(PSNR=28.6305dB)
0.5, 1, 19Tβ λ= = = ( )

(d-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=28.6313dB)

1, 0, 1, 1gT Tβ λ= = = = ( )

(d-11) Tukey SRR Image
with Lap Reg.

(PSNR=27.5795dB)
0.5, 1, 19Tβ λ= = = ( )

(d-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=27.5795dB)

0.5, 1, 19, 19gT Tβ λ= = = =

 

Figure 4.14 : The experimental result of SRR algorithm using the 
proposed robust estimation technique (Lena : The Standard Image) (Con.) 
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(e-2)
Corrupted LR Image

(AWGN:SNR=17.5dB)
(PSNR=24.9598dB) ( )

(e-3) L1 SRR Image
with Lap Reg.

(PSNR=26.0348dB)
0.5, 1β λ= = ( )

(e-4) L1 SRR Image
with BTV Reg.

(PSNR=26.0066dB)
0.5, 0.75, 1, 0.7Pβ λ α= = = =

( )

(e-9) Lor. SRR Image
with Lap Reg.

(PSNR=27.7621dB)
0.5, 1, 15Tβ λ= = = ( )

(e-10) Lor. SRR Image
with Lor.-Lap Reg

(PSNR=27.9152dB)

0.5, 1, 15, 15gT Tβ λ= = = =

( )

(e-5) L2 SRR Image
with Lap Reg.

(PSNR=27.8153dB)
0.5, 1β λ= = ( )

(e-6) L2 SRR Image
with BTV Reg.

(PSNR=27.9640dB)
0.5, 07.5, 1, 0.7Pβ λ α= = = =

(f-2)
Corrupted LR Image
(AWGN:SNR=15dB)
(PSNR=23.3549dB) ( )

(f-3) L1 SRR Image
with Lap Reg.

(PSNR=25.1488dB)
0.5, 1β λ= = ( )

(f-5) L2 SRR Image
with Lap Reg.

(PSNR=26.6406dB)
0.5, 1β λ= =

( )

(f-9) Lor. SRR Image
with Lap Reg.

(PSNR=26.7566dB)
0.5, 1, 9Tβ λ= = = ( )

(f-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=26.7947dB)

0.5, 1, 5, 9gT Tβ λ= = = =

( )

(f-4) L1 SRR Image
with BTV Reg.

(PSNR=25.2642dB)
0.5, 0.8, 1, 0.7Pβ λ α= = = = ( )

(f-6) L2 SRR Image
with BTV Reg.

(PSNR=26.7713dB)
0.5, 0.7, 1, 0.7Pβ λ α= = = =

( )

(e-7) Huber SRR Image
with Lap Reg.

(PSNR=27.8725dB)
0.5, 1, 19Tβ λ= = = ( )

(e-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=27.8812dB)

0.5, 1, 15, 19gT Tβ λ= = = = ( )

(e-11) Tukey SRR Image
with Lap Reg.

(PSNR=26.5722dB)
0.5, 1, 19Tβ λ= = = ( )

(e-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=26.5722dB)

0.5, 1, 19, 19gT Tβ λ= = = =

( )

(f-7) Huber SRR Image
with Lap Reg.

(PSNR=27.1945dB)
0.5, 1, 3Tβ λ= = = ( )

(f-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=27.2119dB)

0.5, 1, 3, 5gT Tβ λ= = = = ( )

(f-11) Tukey SRR Image
with Lap Reg.

(PSNR=25.8894dB)
0.5, 1, 1Tβ λ= = = ( )

(f-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=25.8894dB)

0.5, 1, 1, 19gT Tβ λ= = = =

 

Figure 4.14 : The experimental result of SRR algorithm using the 
proposed robust estimation technique (Lena : The Standard Image) (Con.) 
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(h-2)
Corrupted LR Image

(S&P:D=0.005)
(PSNR=26.8577dB) ( )

(h-3) L1 SRR Image
with Lap Reg.

(PSNR=27.1149dB)
0.5, 1β λ= = ( )

(h-5) L2 SRR Image
with Lap Reg.

(PSNR=28.8495dB)
0.5, 1β λ= =( )

(h-4) L1 SRR Image
with BTV Reg.

(PSNR=26.8577dB)
1, 0.5, 1, 0.7Pβ λ α= = = = ( )

(h-6) L2 SRR Image
with BTV Reg.

(PSNR=28.1438dB)
0.5, 0.6, 1, 0.7Pβ λ α= = = =

( )

(h-9) Lor. SRR Image
with Lap Reg.

(PSNR=31.1843dB)
1, 0.25, 9Tβ λ= = = ( )

(h-10) Lor. SRR Image
with Lor-Lap Reg.

(PSNR=31.2123dB)

1, 0.5, 9, 1gT Tβ λ= = = =

(g-2)
Corrupted LR Image

(Poisson)
(PSNR=26.5116dB) ( )

(g-3) L1 SRR Image
with Lap Reg.

(PSNR=26.9604dB)
0.5, 1β λ= = ( )

(g-5) L2 SRR Image
with Lap Reg.

(PSNR=28.7190dB)
0.5, 1β λ= =

( )

(g-9) Lor. SRR Image
with Lap Reg.

(PSNR=28.6735dB)
0.5, 1, 19Tβ λ= = = ( )

(g-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=28.7471dB)

0.5, 1, 19, 5gT Tβ λ= = = =

( )

(g-4) L1 SRR Image
with BTV Reg.

(PSNR=26.8759dB)
0.5, 0.8, 1, 0.7Pβ λ α= = = = ( )

(g-6) L2 SRR Image
with BTV Reg.

(PSNR=28.6848dB)
0.5, 0.5, 1, 0.7Pβ λ α= = = =

( )

(g-7) Huber SRR Image
with Lap Reg.

(PSNR=28.7282dB)
0.5, 1, 19Tβ λ= = = ( )

(g-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=28.7330dB)

0.5, 1, 5, 19gT Tβ λ= = = = ( )

(g-11) Tukey SRR Image
with Lap Reg.

(PSNR=27.7876dB)
0.5, 1, 19Tβ λ= = = ( )

(g-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=27.8160dB)

0.5, 0.75, 19, 19gT Tβ λ= = = =

( )

(h-7) Huber SRR Image
with Lap Reg.

(PSNR=30.9462dB)
1, 0.25, 5Tβ λ= = = ( )

(h-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=31.3351dB)

1, 0.25, 9, 1gT Tβ λ= = = = ( )

(h-11) Tukey SRR Image
with Lap Reg.

(PSNR=31.3146dB)
1, 0.25, 19Tβ λ= = = ( )

(h-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=31.3146dB)

1, 0.25, 19, 19gT Tβ λ= = = =

 

Figure 4.14 : The experimental result of SRR algorithm using the 
proposed robust estimation technique (Lena : The Standard Image) (Con.) 
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(i-2)
(S&P:D=0.010)

Corrupted LR Image
(PSNR=25.2677dB) ( )

(i-3) L1 SRR Image
with Lap Reg.

(PSNR=26.0569dB)
1, 1β λ= = ( )

(i-4) L1 SRR Image
with BTV Reg.

(PSNR=25.2677dB)
1, 0.4, 1, 0.7Pβ λ α= = = =

( )

(i-9) Lor. SRR Image
with Lap Reg.

(PSNR=31.0524dB)
1, 0.25, 19Tβ λ= = =

( )

(i-5) L2 SRR Image
with Lap Reg.

(PSNR=28.0346dB)
0.5, 1β λ= = ( )

(i-6) L2 SRR Image
with BTV Reg.

(PSNR=26.7979dB)
0.5, 0.4, 1, 0.7Pβ λ α= = = =

( )

(i-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=31.0748dB)

1, 0.25, 9, 5gT Tβ λ= = = =

(j-2)
Corrupted LR Image

(S&P:D=0.015)
(PSNR=24.2190dB) ( )

(j-3) L1 SRR Image
with Lap Reg.

(PSNR=25.3534dB)
1, 1β λ= = ( )

(j-5) L2 SRR Image
with Lap Reg.

(PSNR=27.3188dB)
0.5, 1β λ= =

( )

(j-9) Lor. SRR Image
with Lap Reg.

(PSNR=30.0229dB)
1, 0.25, 19Tβ λ= = =

( )

(j-4) L1 SRR Image
with BTV Reg.

(PSNR=24.2202dB)
0.5, 0.3, 1, 0.7Pβ λ α= = = = ( )

(j-6) L2 SRR Image
with BTV Reg.

(PSNR=25.8242dB)
0.5, 0.4, 1, 0.7Pβ λ α= = = =

( )

(j-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=31.0627dB)

1, 0.25, 9, 5gT Tβ λ= = = =

( )

(i-7) Huber SRR Image
with Lap Reg.

(PSNR=30.9329dB)
1, 0.25, 5Tβ λ= = = ( )

(i-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=31.1113dB)

1, 0.25, 9, 1gT Tβ λ= = = = ( )

(i-11) Tukey SRR Image
with Lap Reg.

(PSNR=31.3423dB)
1, 0.25, 19Tβ λ= = = ( )

(i-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=31.3423dB)

1, 0.25, 19, 19gT Tβ λ= = = =

( )

(j-7) Huber SRR Image
with Lap Reg.

(PSNR=30.9124dB)
1, 0.25, 5Tβ λ= = = ( )

(j-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=31.0234dB)

1, 0.25, 9, 1gT Tβ λ= = = = ( )

(j-11) Tukey SRR Image
with Lap Reg.

(PSNR=31.2792dB)
1, 0.25, 19Tβ λ= = = ( )

(j-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=31.2792dB)

1, 0.25, 19, 19gT Tβ λ= = = =

 

Figure 4.14 : The experimental result of SRR algorithm using the 
proposed robust estimation technique (Lena : The Standard Image) (Con.) 
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(l-2)
(Speckle:V=0.05)

Corrupted LR Image
(PSNR=21.7994dB) ( )

(l-3) L1 SRR Image
with Lap Reg.

(PSNR=24.4215dB)
0.5, 1β λ= = ( )

(l-5) L2 SRR Image
with Lap Reg.

(PSNR=25.3165dB)
0.5, 1β λ= =

( )

(l-9) Lor. SRR Image
with Lap Reg.

(PSNR=25.3136dB)
0.5, 1, 1Tβ λ= = = ( )

(l-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=25.6090dB)

0.5, 1, 1, 5gT Tβ λ= = = =

( )

(l-4) L1 SRR Image
with BTV Reg.

(PSNR=24.5102dB)
0.5, 0.5, 1, 0.7Pβ λ α= = = = ( )

(l-6) L2 SRR Image
with BTV Reg.

(PSNR=23.9580dB)
0.5, 0.4, 1, 0.7Pβ λ α= = = =

( )

(l-7) Huber SRR Image
with Lap Reg.

(PSNR=26.0595dB)
1, 0.75, 1Tβ λ= = = ( )

(l-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=26.2596dB)

1, 1, 1, 1gT Tβ λ= = = = ( )

(l-11) Tukey SRR Image
with Lap Reg.

(PSNR=25.2894dB)
0.5, 1, 1Tβ λ= = = ( )

(l-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=25.2894dB)

0.5, 1, 1, 19gT Tβ λ= = = =

(k-2)
(Speckle:V=0.03)

Corrupted LR Image
(PSNR=23.5294dB) ( )

(k-3) L1 SRR Image
with Lap Reg.

(PSNR=25.3133dB)
0.5, 1β λ= = ( )

(k-5) L2 SRR Image
with Lap Reg.

(PSNR=26.6956dB)
0.5, 1β λ= =( )

(k-4) L1 SRR Image
with BTV Reg.

(PSNR=25.217dB)
0.5, 0.4, 1, 0.7Pβ λ α= = = = ( )

(k-6) L2 SRR Image
with BTV Reg.

(PSNR=26.2725dB)
0.5, 0.5, 1, 0.7Pβ λ α= = = =

( )

(k-9) Lor. SRR Image
with Lap Reg.

(PSNR=26.0696dB)
0.5, 1, 19Tβ λ= = = ( )

(k-10) Lor. SRR Image
with Lor.-Lap Reg.

(PSNR=26.3847dB)

0.5, 1, 19, 19gT Tβ λ= = = =( )

(k-7) Huber SRR Image
with Lap Reg.

(PSNR=26.6723dB)
1, 0.75, 1Tβ λ= = = ( )

(k-8) Huber SRR Image
with Huber-Lap Reg.
(PSNR=26.8838dB)

1, 1, 1, 1gT Tβ λ= = = = ( )

(k-11) Tukey SRR Image
with Lap Reg.

(PSNR=25.8825dB)
0.5, 1, 1Tβ λ= = = ( )

(k-12) Tukey SRR Image
with Tukey-Lap Reg.
(PSNR=25.8825dB)

0.5, 1, 1, 19gT Tβ λ= = = =

 

Figure 4.14 : The experimental result of SRR algorithm using the 
proposed robust estimation technique (Lena : The Standard Image) (Con.) 
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4.3.3 Experimental Conclusion on Robust Estimation Technique for 
SRR  

From all experimental results of both Susie Sequence (40th 
Frame) and Lena (The Standard Image) shown in Fig. 4.15 and Fig. 4.16 
respectively, all comparatively experimental results are concluded as 
follow: 

• The SRR algorithm using Huber and Lorentzian norm with the 
proposed registration gives the highest PSRN especially for high 
power noise. 

• For Salt&Pepper Noise cases, the Huber, Lorentzian and Tukey 
estimator give the far better reconstruction than L1 and L2 estimator 
because these robust estimators are designed to be robust and reject 
outliers. The norms are more forgiving on outliers; that is, they should 
increase less rapidly than L2. 

• The SRR algorithm using Tukey norm gives the lower PSRN than the 
Huber, Lorentzian and L2 norm because Tukey norm is excessively 
robust against the outliers (and the Tukey influence function equal 
zero) therefore some information losses. 

• The SRR algorithm using L1 norm with the proposed registration 
gives the lowest PSRN because the L1 norm is excessively robust 
against the outliers. 
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Figure 4.15 (a) : The experimental result table of SRR algorithm using 
the proposed Registration (Susie : The 40th Frame) 

 

 

Figure 4.15 (b) : The experimental result of SRR algorithm using the 
proposed Registration (Susie : The 40th Frame) 
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Figure 4.16 (a) : The experimental result table of SRR algorithm using 
the proposed Registration (Lena : The Standard Image) 

 

 

Figure 4.16 (b) : The experimental result of SRR algorithm using the 
proposed Registration (Lena : The Standard Image)  
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4.4 Experiments on the SRR Algorithm using Robust Estimation 
Technique with Classical Registration 

The objective of this experiment is to demonstrate the 
performance of the proposed robust norm regarding to the SRR 
performance. The SRR algorithm is applied to the image sequence using 
the classical registration (the translation block-based registration). This 
section presents the experiments and results obtained by the SRR 
algorithm using Huber, Lorentzian and Tukey norm with the classical 
registration. Later, the results of SRR algorithm using L1 and L2 are 
presented for performance comparison. 

The experiment was implemented in MATLAB and the 
block size of LR images is fixed at 8x8 (or 16x16 for overlapping block) 
and the search window is 9x9 for classical registration and 5 Frames for 
ML estimation process. The 38th- 42nd frame Susie sequence and the 
108th- 112th frame Foreman sequence in QCIF format (176x144), are used 
in these experiments to reconstruct the high resolution image of the 40th 
frame of Susie and the 110th frame of Foreman respectively. Both 
sequences have complex-edge characteristic. Then, to simulate the effect 
of camera PSF, the images were convolved with a symmetric Gaussian 
low-pass filter with size of 3x3 and standard deviation of one. The 
blurred images were subsampled by the factor of two in each direction 
(88x72) and the blurred subsampled images were corrupted by Gaussian 
noise. The LR image sequence synthesis algorithm is shown in Figure 
4.7.  

The criterion for parameter selection in this experiment was 
to choose parameters which produce both most visually appealing results 
and highest PSNR. Therefore, to ensure fairness, each experiment was 
repeated several times with different parameters and the best result of 
each experiment was chosen [97-100]. 

 

4.4.1 Susie Sequence (The 40th Frame) 

4.4.1.1 Noiseless 

The original HR image is shown in Fig. 4.17(a-1) and one of 
corrupted LR images is shown in Fig. 4.17(a-2). Next, the result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Huber 
estimator, Lorentzian estimator and Tukey estimator are shown in Figs. 
4.17(a-3) - 4.17(a-7) respectively. From the results, Huber estimator can 
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reconstruct the noiseless image slightly better than L1 and L2 estimator 
respectively. 

4.4.1.2 AWGN (Additive White Gaussian Noise) 

This experiment is a 5 AWGN cases at SNR=25, 22.5, 20, 
17.5 and 15dB respectively and the original HR images are shown in Fig. 
4.17(b-1) - Fig. 4.17(f-1) respectively. The corrupted images at SNR=25, 
22.5, 20, 17.5 and 15dB are showed in Fig. 4.17(b-2) - Fig. 4.17(f-2) 
respectively.  

At the high SNR (SNR=25 and 22.5dB) or low noise power, 
the Huber estimator result gives slightly higher PSNR than Lorentzian 
and Tukey estimator result. However, all three estimator results have 
higher PSNR than L1 and L2 estimator result. At SNR=25dB and 
SNR=22.5dB, the result of implementing the SRR algorithm using L1 
estimator, L2 estimator, Huber estimator, Lorentzian estimator and Tukey 
estimator are shown in Figs. 4.17(b-3) - 4.17(b-7) and Figs. 4.17(c-3) - 
4.17(c-7) respectively. 

At low SNR (SNR=20dB, 17.5dB and 15dB) or high noise 
power, the Tukey estimator result give the best performance than Huber 
and Lorentzian estimator result. All three robust estimator results have 
higher PSNR than L1 and L2 estimator result. At SNR=20dB, 
SNR=17.5dB and SNR=15dB, the result of implementing the SRR 
algorithm using L1 estimator, L2 estimator, Huber estimator, Lorentzian 
estimator and Tukey estimator are shown in Fig. 4.17(d-3) - Fig. 4.17(d-
7), Fig. 4.17(e-3) - Fig. 4.17(e-7) and Fig. 4.17(f-3) - Fig. 4.17(f-7) 
respectively. 

From the result, all proposed robust estimators gives the 
better result for SRR estimating than classical L1 and L2 estimator. The 
result demonstrated the higher resistance to the registration error of the 
proposed robust estimators. 

4.4.1.3 Poisson Noise 

The original HR image is shown in Fig. 4.17(g-1) and one of 
corrupted LR images is shown in Fig. 4.17(g-2). The Lorentzian 
estimator result gives the highest PSNR. Huber, Lorentzian and Tukey 
estimator result have higher PSNR than L1 and L2 estimator result. The 
result of implementing the SRR algorithm using L1 estimator, L2 
estimator, Huber estimator, Lorentzian estimator and Tukey estimator are 
shown in Figs. 4.17(g-3) - 4.17(g-7) respectively. From the results, Huber 
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estimator reconstructs the noiseless image slightly better than L1 and L2 
estimator respectively. 

From the result, all proposed robust estimators gives the 
better SRR result than L1 and L2 estimators because all proposed robust 
estimators are more resistant to the registration error. 

4.4.1.4 Salt&Pepper Noise 

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, 
D=0.010 and D=0.015 respectively and the original HR images are 
shown in Fig. 4.17(h-1) – Fig. 4.17(j-1) respectively. The corrupted 
images at D=0.005, D=0.010 and D=0.015 are showed in Fig. 4.17(h-2), 
Fig. 4.17(i-2) and Fig. 4.17(j-2) respectively. The results of Huber, 
Lorentzian and Tukey have higher PSNR than these of L1 and L2 
estimator. At D=0.005, D=0.010 and D=0.015, the result of implementing 
the SRR algorithm using L1 estimator, L2 estimator, Huber estimator, 
Lorentzian estimator and Tukey estimator are shown in Figs. 4.17(h-3) - 
4.17(h-8),  Figs. 4.17(i-3) - 4.17(i-8) and Figs 4.17(j-4) - 4.17(j-8) 
respectively. From the result, all proposed robust estimators give the 
better result for SRR estimating than L1 and L2 estimator because all 
proposed robust estimators are more resistant to the registration error. 

4.4.1.5 Speckle Noise 

The last experiment is a 3 Speckle Noise cases for 40th 
frame Susie sequence at V=0.01, V=0.02 and V=0.03 respectively and 
the original HR images are shown in Figs. 4.17(k-1) –4.17(m-1) 
respectively. The corrupted images at V=0.01, V=0.02 and V=0.03 are 
showed in Fig. 4.17(k-2), Fig. 4.17(l-2) and Fig. 4.17(m-2) respectively. 
The Huber, Lorentzian and Tukey give higher PSNR than L1 and L2 
estimator results. At V=0.01, V=0.02 and V=0.03, the result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Huber 
estimator, Lorentzian estimator and Tukey estimator are shown in Figs. 
4.17(k-3) - 4.17(k-8),  Figs. 4.17(l-3) - 4.17(l-8) and Figs. 4.17(m-4) - 
4.17(m-8) respectively. 

 From the result, all proposed robust estimators give the 
better SRR result than L1 and L2 estimator because all proposed robust 
estimators are more resistance to the registration error. Moreover, L2 
estimator can not enhancement the image corrupted by Speckle noise 
because the L2 norm is very sensitive to outliers (registration error) 
where the influence function increases linearly and without bound. 
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(a-1, ,m-1)
Original HR Image

(Frame 40)

…

(a-2)
Corrupted LR Image

(Noiseless)
(PSNR=32.1687dB) ( )

(a-3) L1 SRR Image
with Lap Reg.

(PSNR=32.1687dB)
1, 0β λ= = ( )

(a-4) L2 SRR Image
with Lap Reg.

(PSNR=32.1687dB)
1, 0β λ= = ( )

(a-6) Lor. SRR Image
with Lap Reg.

(PSNR=32.1687dB)
0.25, 0, 3Tβ λ= = =( )

(a-5) Huber SRR Image
with Lap Reg.

(PSNR=32.2233dB)
0.5, 0, 3Tβ λ= = =

(b-2)
Corrupted LR Image
(AWGN:SNR=25dB)
(PSNR=30.1487dB)

( )

(a-7) Tukey SRR Image
with Lap Reg.

(PSNR=32.1687dB)
1, 0, 3Tβ λ= = =

( )

(b-3) L1 SRR Image
with Lap Reg.

(PSNR=30.3824dB)
1, 1β λ= = ( )

(b-4) L2 SRR Image
with Lap Reg.

(PSNR=30.1487dB)
1, 1β λ= = ( )

(b-6) Lor. SRR Image
with Lap Reg.

(PSNR=30.6558dB)
1, 0.75, 1Tβ λ= = =( )

(b-5) Huber SRR Image
with Lap Reg.

(PSNR=30.7656dB)
0.5, 1, 1Tβ λ= = = ( )

(b-7) Tukey SRR Image
with Lap Reg.

(PSNR=30.6339dB)
0.5, 0.75, 1Tβ λ= = =

(c-2)
Corrupted LR Image

(AWGN:SNR=22.5dB)
(PSNR=29.0574dB) ( )

(c-3) L1 SRR Image
with Lap Reg.

(PSNR=29.6625dB)
0.5, 1β λ= = ( )

(c-4) L2 SRR Image
with Lap Reg.

(PSNR=29.0574dB)
1, 1β λ= = ( )

(c-6) Lor. SRR Image
with Lap Reg.

(PSNR=30.0640dB)
0.5, 1, 1Tβ λ= = =( )

(c-5) Huber SRR Image
with Lap Reg.

(PSNR=30.0953dB)
0.5, 1, 1Tβ λ= = = ( )

(c-7) Tukey SRR Image
with Lap Reg.

(PSNR=30.0524dB)
0.5, 0.75, 1Tβ λ= = =

(d-2)
Corrupted LR Image
(AWGN:SNR=20dB)
(PSNR=27.5740dB) ( )

(d-3) L1 SRR Image
with Lap Reg.

(PSNR=28.8004dB)
1, 1β λ= = ( )

(d-4) L2 SRR Image
with Lap Reg.

(PSNR=27.5740dB)
1, 1β λ= = ( )

(d-6) Lor. SRR Image
with Lap Reg.

(PSNR=29.4130dB)
0.5, 1, 1Tβ λ= = =( )

(d-5) Huber SRR Image
with Lap Reg.

(PSNR=29.2053dB)
0.5, 1, 1Tβ λ= = = ( )

(d-7) Tukey SRR Image
with Lap Reg.

(PSNR=29.4302dB)
0.5, 0.75, 1Tβ λ= = =

 

Figure 4.17 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with classical registration 



 108

(e-2)
Corrupted LR Image

(AWGN:SNR=17.5dB)
(PSNR=25.7765dB) ( )

(e-3) L1 SRR Image
with Lap Reg.

(PSNR=26.1635dB)
1, 1β λ= = ( )

(e-4) L2 SRR Image
with Lap Reg.

(PSNR=25.7765dB)
1, 1β λ= = ( )

(e-6) Lor. SRR Image
with Lap Reg.

(PSNR=28.5822dB)
0.5, 1, 1Tβ λ= = =( )

(e-5) Huber SRR Image
with Lap Reg.

(PSNR=28.1477dB)
0.5, 1, 1Tβ λ= = = ( )

(e-7) Tukey SRR Image
with Lap Reg.

(PSNR=28.5655dB)
0.5, 0.75, 1Tβ λ= = =

(f-2)
Corrupted LR Image
(AWGN:SNR=15dB)
(PSNR=23.7393dB) ( )

(f-3) L1 SRR Image
with Lap Reg.

(PSNR=26.2371dB)
1, 1β λ= = ( )

(f-4) L2 SRR Image
with Lap Reg.

(PSNR=23.7393dB)
1, 1β λ= = ( )

(f-6) Lor. SRR Image
with Lap Reg.

(PSNR=27.6293dB)
0.5, 1, 1Tβ λ= = =( )

(f-5) Huber SRR Image
with Lap Reg.

(PSNR=26.8485dB)
0.5, 1, 1Tβ λ= = = ( )

(f-7) Tukey SRR Image
with Lap Reg.

(PSNR=27.6622dB)
0.5, 1, 1Tβ λ= = =

(g-2)
Corrupted LR Image

(Poisson)
(PSNR=27.9892dB) ( )

(g-3) L1 SRR Image
with Lap Reg.

(PSNR=28.8819dB)
1, 1β λ= = ( )

(g-4) L2 SRR Image
with Lap Reg.

(PSNR=27.9892dB)
1, 1β λ= = ( )

(g-6) Lor. SRR Image
with Lap Reg.

(PSNR=29.4818dB)
0.5, 1, 1Tβ λ= = =( )

(g-5) Huber SRR Image
with Lap Reg.

(PSNR=29.3964dB)
0.5, 1, 1Tβ λ= = = ( )

(g-7) Tukey SRR Image
with Lap Reg.

(PSNR=29.4410dB)
0.5, 1, 1Tβ λ= = =

(h-2)
Corrupted LR Image

(S&P:D=0.005)
(PSNR=29.3506dB) ( )

(h-3) L1 SRR Image
with Lap Reg.

(PSNR=29.7082dB)
1, 1β λ= = ( )

(h-4) L2 SRR Image
with Lap Reg.

(PSNR=29.3506dB)
1, 1β λ= = ( )

(h-6) Lor. SRR Image
with Lap Reg.

(PSNR=30.1296dB)
0.5, 1, 1Tβ λ= = =( )

(h-5) Huber SRR Image
with Lap Reg.

(PSNR=30.1811dB)
0.5, 1, 1Tβ λ= = = ( )

(h-7) Tukey SRR Image
with Lap Reg.

(PSNR=30.1086dB)
1, 0.5, 1Tβ λ= = =

 

Figure 4.17 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with classical registration (Susie 

Sequence : The 40th frame) (Con.) 
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(i-2)
Corrupted LR Image

(S&P:D=0.010)
(PSNR=27.3206dB) ( )

(i-3) L1 SRR Image
with Lap Reg.

(PSNR=28.2861dB)
1, 1β λ= = ( )

(i-4) L2 SRR Image
with Lap Reg.

(PSNR=27.3206dB)
1, 1β λ= = ( )

(i-6) Lor. SRR Image
with Lap Reg.

(PSNR=29.1334dB)
0.5, 1, 1Tβ λ= = =( )

(i-5) Huber SRR Image
with Lap Reg.

(PSNR=29.0074dB)
0.5, 1, 1Tβ λ= = = ( )

(i-7) Tukey SRR Image
with Lap Reg.

(PSNR=29.1559dB)
0.5, 0.75, 1Tβ λ= = =

(j-2)
Corrupted LR Image

(S&P:D=0.015)
(PSNR=25.5210dB) ( )

(j-3) L1 SRR Image
with Lap Reg.

(PSNR=27.0972dB)
1, 1β λ= = ( )

(j-4) L2 SRR Image
with Lap Reg.

(PSNR=25.5210dB)
1, 1β λ= = ( )

(j-6) Lor. SRR Image
with Lap Reg.

(PSNR=28.2265dB)
0.5, 1, 1Tβ λ= = =( )

(j-5) Huber SRR Image
with Lap Reg.

(PSNR=27.9247dB)
0.5, 1, 1Tβ λ= = = ( )

(j-7) Tukey SRR Image
with Lap Reg.

(PSNR=28.3944dB)
0.5, 0.75, 1Tβ λ= = =

(k-2)
Corrupted LR Image

(Speckle:V=0.01)
(PSNR=27.5301dB) ( )

(k-3) L1 SRR Image
with Lap Reg.

(PSNR=28.6916dB)
1, 1β λ= = ( )

(k-4) L2 SRR Image
with Lap Reg.

(PSNR=27.5301dB)
1, 1β λ= = ( )

(k-6) Lor. SRR Image
with Lap Reg.

(PSNR=29.2939dB)
0.5, 1, 1Tβ λ= = =( )

(k-5) Huber SRR Image
with Lap Reg.

(PSNR=29.1530dB)
0.5, 1, 1Tβ λ= = = ( )

(k-7) Tukey SRR Image
with Lap Reg.

(PSNR=29.3285dB)
0.5, 1, 1Tβ λ= = =

(l-2)
Corrupted LR Image

(Speckle:V=0.02)
(PSNR=25.2720dB) ( )

(l-3) L1 SRR Image
with Lap Reg.

(PSNR=27.2486dB)
1, 1β λ= = ( )

(l-4) L2 SRR Image
with Lap Reg.

(PSNR=25.2720dB)
1, 1β λ= = ( )

(l-6) Lor. SRR Image
with Lap Reg.

(PSNR=28.2024dB)
0.5, 1, 1Tβ λ= = =( )

(l-5) Huber SRR Image
with Lap Reg.

(PSNR=27.6152dB)
0.5, 1, 1Tβ λ= = = ( )

(l-7) Tukey SRR Image
with Lap Reg.

(PSNR=28.3146dB)
0.5, 1, 1Tβ λ= = =

 

Figure 4.17 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with classical registration (Susie 

Sequence : The 40th frame) (Con.) 
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(m-2)
Corrupted LR Image

(Speckle:V=0.03)
(PSNR=23.9860dB) ( )

(m-3) L1 SRR Image
with Lap Reg.

(PSNR=26.7384dB)
0.5, 1β λ= = ( )

(m-4) L2 SRR Image
with Lap Reg.

(PSNR=23.9860dB)
1, 1β λ= = ( )

(m-6) Lor. SRR Image
with Lap Reg.

(PSNR=27.8448dB)
0.5, 1, 1Tβ λ= = =( )

(m-5) Huber SRR Image
with Lap Reg.

(PSNR=26.9130dB)
0.5, 1, 1Tβ λ= = = ( )

(m-7) Tukey SRR Image
with Lap Reg.

(PSNR=27.9922dB)
0.5, 1, 1Tβ λ= = =

 

Figure 4.17 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with classical registration (Susie 

Sequence : The 40th frame) (Con.) 

 

4.4.2 Foreman Sequence (The 110th Frame) 

4.4.2.1 Noiseless 

The original HR image is shown in Fig. 4.18(a-1) and one of 
corrupted LR images is shown in Fig. 4.18(a-2). The SRR result using L1 
estimator, L2 estimator, Huber estimator, Lorentzian estimator and Tukey 
estimator are shown in Figs. 4.18(a-3) - 4.18(a-7) respectively. From the 
results, Huber estimator can reconstruct the noiseless image slightly 
better than L1 and L2 estimator. 

4.4.2.2 AWGN (Additive White Gaussian Noise) 

This experiment is a 5 AWGN cases at SNR=25, 22.5, 20, 
17.5 and 15dB respectively and the original HR images are shown in Fig. 
4.18(b-1) - Fig. 4.18(f-1) respectively. The corrupted images at SNR=25, 
22.5, 20, 17.5 and 15dB are showed in Fig. 4.18(b-2) - Fig. 4.18(f-2) 
respectively.  

At the high SNR (SNR=25 and 22.5dB) or low noise power, 
the Huber estimator results have slightly higher PSNR than Lorentzian 
and Tukey estimator result. Huber, Lorentzian and Tukey estimator result 
have higher PSNR than L1 and L2 estimator result. At SNR=25dB and 
SNR=22.5dB, the result of implementing the SRR algorithm using L1 
estimator, L2 estimator, Huber estimator, Lorentzian estimator and Tukey 
estimator are shown in Figs. 4.18(b-3) - 4.18(b-7) and Figs. 4.18(c-3) - 
4.18(c-7) respectively. 
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At low SNR (SNR=20dB, 17.5dB and 15dB) or high noise 
power, the Tukey estimator result give the best performance than Huber 
and Lorentzian estimator result. Huber, Lorentzian and Tukey estimator 
result have higher PSNR than L1 and L2 estimator result. At SNR=20dB, 
17.5dB and 15dB, the result of implementing the SRR algorithm using L1 
estimator, L2 estimator, Huber estimator, Lorentzian estimator and Tukey 
estimator are shown in Figs. 4.18(d-3) - 4.18(d-7), Figs. 4.18(e-3) - 
4.18(e-7) and Figs. 4.18(f-3) - 4.18(f-7) respectively. 

From the result, all proposed robust estimators have the 
better SRR result than L1 and L2 estimator because all proposed robust 
estimators are more resistant to the registration error. 

4.4.2.3 Poisson Noise 

The original HR image is shown in Fig. 4.18(g-1) and one of 
corrupted LR images is shown in Fig. 4.18(g-2). The Lorentzian 
estimator result gives the highest PSNR than Huber, Tukey, L1 and L2 
estimator. Huber, Lorentzian and Tukey estimator result have higher 
PSNR than L1 and L2 estimator result. The result of implementing the 
SRR algorithm using L1 estimator, L2 estimator, Huber estimator, 
Lorentzian estimator and Tukey estimator are shown in Figs. 4.18(g-3) - 
4.18(g-7) respectively. From the results, Huber estimator can reconstruct 
the noiseless image slightly better than L1 and L2 estimator respectively. 

From the result, all proposed robust estimators gives the 
better SRR than L1 and L2 estimators because all proposed robust 
estimators are more resistant to the registration error. 

4.4.2.4 Salt&Pepper Noise 

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, 
D=0.010 and D=0.015 respectively and the original HR images are 
shown in Figs. 4.18(h-1) –4.18(j-1) respectively. The corrupted images at 
D=0.005, D=0.010 and D=0.015 are showed in Figs. 4.18(h-2), Fig. 
4.18(i-2) and Fig. 4.18(j-2) respectively. The Huber, Lorentzian and 
Tukey give higher PSNR than L1 and L2 estimator results. 

At D=0.005, D=0.010 and D=0.015, the result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Huber 
estimator, Lorentzian estimator and Tukey estimator are shown in Figs. 
4.18(h-3) - 4.18(h-8),  Figs. 4.18(i-3) - 4.18(i-8) and Figs. 4.18(j-4) - 
4.18(j-8) respectively. From the result, all proposed robust estimators 
give the better SRR result than L1 and L2 estimators because all proposed 
robust estimators are more resistant to the registration error. 



 112

4.4.2.5 Speckle Noise 

The last experiment is a 3 Speckle Noise cases for 40th 
frame Foreman sequence at V=0.01, V=0.02 and V=0.03 respectively and 
the original HR images are shown in Fig. 4.18(k-1) – Fig. 4.18(m-1) 
respectively. The corrupted images at V=0.01, V=0.02 and V=0.03 are 
showed in Fig. 4.18(k-2), Fig. 4.18(l-2) and Fig. 4.18(m-2) respectively. 
The Huber, Lorentzian and Tukey give higher PSNR than L1 and L2 
estimator results. At V=0.01, V=0.02 and V=0.03, the result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Huber 
estimator, Lorentzian estimator and Tukey estimator are shown in Figs. 
4.18(k-3) - 4.18(k-8),  Figs. 4.18(l-3) - 4.18(l-8) and Figs. 4.18(m-4) - 
4.18(m-8) respectively. 

From the result, all proposed robust estimators gives the 
better SRR results than L1 and L2 estimators because all proposed robust 
estimators are more resistant to the registration error. Moreover, L2 
estimator can not enhancement the image corrupted by Speckle noise 
because the L2 norm is very sensitive to outliers (registration error) 
where the influence function increases linearly and without bound. 
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(a-1, ,m-1)
Original HR Image

(Frame 110th)

…

(a-2)
Corrupted LR Image

(Noiseless)
(PSNR=27.5449dB) ( )

(a-3) L1 SRR Image
with Lap Reg.

(PSNR=27.5449dB)
1, 0β λ= = ( )

(a-4) L2 SRR Image
with Lap Reg.

(PSNR=27.5449dB)
1, 0β λ= = ( )

(a-6) Lor. SRR Image
with Lap Reg.

(PSNR=27.5449dB)
0.5, 0, 3Tβ λ= = =( )

(a-5) Huber SRR Image
with Lap Reg.

(PSNR=27.6705dB)
0.5, 0.25, 5Tβ λ= = =

(b-2)
Corrupted LR Image
(AWGN:SNR=25dB)
(PSNR=25.8468dB)

( )

(a-7) Tukey SRR Image
with Lap Reg.

(PSNR=27.5449dB)
0.5, 0, 3Tβ λ= = =

( )

(b-3) L1 SRR Image
with Lap Reg.

(PSNR=26.0369dB)
0.5, 1β λ= = ( )

(b-4) L2 SRR Image
with Lap Reg.

(PSNR=25.8468dB)
1, 1β λ= = ( )

(b-6) Lor. SRR Image
with Lap Reg.

(PSNR=26.1321dB)
0.5, 1, 1Tβ λ= = =( )

(b-5) Huber SRR Image
with Lap Reg.

(PSNR=26.2374dB)
1, 0.5, 1Tβ λ= = = ( )

(b-7) Tukey SRR Image
with Lap Reg.

(PSNR=26.1304dB)
0.5, 0.25, 1Tβ λ= = =

(c-2)
Corrupted LR Image

(AWGN:SNR=22.5dB)
(PSNR=24.8508dB) ( )

(c-3) L1 SRR Image
with Lap Reg.

(PSNR=25.4006dB)
0.5, 1β λ= = ( )

(c-4) L2 SRR Image
with Lap Reg.

(PSNR=24.8508dB)
1, 1β λ= = ( )

(c-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.5779dB)
0.5, 1, 1Tβ λ= = =( )

(c-5) Huber SRR Image
with Lap Reg.

(PSNR=25.6790dB)
0.5, 1, 1Tβ λ= = = ( )

(c-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.5743dB)
0.5, 1, 1Tβ λ= = =

(d-2)
Corrupted LR Image
(AWGN:SNR=20dB)
(PSNR=23.7206dB) ( )

(d-3) L1 SRR Image
with Lap Reg.

(PSNR=24.7384dB)
0.5, 1β λ= = ( )

(d-4) L2 SRR Image
with Lap Reg.

(PSNR=23.7206dB)
1, 1β λ= = ( )

(d-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.0142dB)
0.5, 0.75, 1Tβ λ= = =( )

(d-5) Huber SRR Image
with Lap Reg.

(PSNR=25.0708dB)
0.5, 1, 1Tβ λ= = = ( )

(d-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.0038dB)
0.5, 0.75, 1Tβ λ= = =

 

Figure 4.18 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with classical registration  
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(e-2)
Corrupted LR Image

(AWGN:SNR=17.5dB)
(PSNR=22.1395dB) ( )

(e-3) L1 SRR Image
with Lap Reg.

(PSNR=24.8148dB)
0.5, 1β λ= = ( )

(e-4) L2 SRR Image
with Lap Reg.

(PSNR=22.1395dB)
1, 1β λ= = ( )

(e-6) Lor. SRR Image
with Lap Reg.

(PSNR=24.2512dB)
1, 0.75, 1Tβ λ= = =( )

(e-5) Huber SRR Image
with Lap Reg.

(PSNR=24.2213dB)
0.5, 1, 1Tβ λ= = = ( )

(e-7) Tukey SRR Image
with Lap Reg.

(PSNR=24.2404dB)
1, 0.75, 1Tβ λ= = =

(f-2)
Corrupted LR Image
(AWGN:SNR=15dB)
(PSNR=20.3124dB) ( )

(f-3) L1 SRR Image
with Lap Reg.

(PSNR=22.7614dB)
0.5, 1β λ= = ( )

(f-4) L2 SRR Image
with Lap Reg.

(PSNR=20.3124dB)
1, 1β λ= = ( )

(f-6) Lor. SRR Image
with Lap Reg.

(PSNR=23.4742dB)
0.5, 1, 1Tβ λ= = =( )

(f-5) Huber SRR Image
with Lap Reg.

(PSNR=23.3067dB)
0.5, 1, 1Tβ λ= = = ( )

(f-7) Tukey SRR Image
with Lap Reg.

(PSNR=23.4576dB)
1, 0.75, 1Tβ λ= = =

(g-2)
Corrupted LR Image

(Poisson)
(PSNR=25.0577dB) ( )

(g-3) L1 SRR Image
with Lap Reg.

(PSNR=25.5626dB)
0.5, 1β λ= = ( )

(g-4) L2 SRR Image
with Lap Reg.

(PSNR=25.0577dB)
1, 1β λ= = ( )

(g-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.7745dB)
0.5, 0.75, 1Tβ λ= = =( )

(g-5) Huber SRR Image
with Lap Reg.

(PSNR=25.8713dB)
0.5, 1, 1Tβ λ= = = ( )

(g-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.7630dB)
0.5, 1, 1Tβ λ= = =

(h-2)
Corrupted LR Image

(S&P:D=0.005)
(PSNR=25.5815dB) ( )

(h-3) L1 SRR Image
with Lap Reg.

(PSNR=25.8052dB)
0.5, 1β λ= = ( )

(h-4) L2 SRR Image
with Lap Reg.

(PSNR=25.5815dB)
1, 1β λ= = ( )

(h-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.9713dB)
0.5, 1, 3Tβ λ= = =( )

(h-5) Huber SRR Image
with Lap Reg.

(PSNR=26.0851dB)
0.5, 0.5, 1Tβ λ= = = ( )

(h-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.9457dB)
0.5, 0.5, 1Tβ λ= = =

 

Figure 4.18 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with classical registration (Foreman 

Sequence : The 110th frame)) (Con.) 
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(i-2)
Corrupted LR Image

(S&P:D=0.010)
(PSNR=24.6287dB) ( )

(i-3) L1 SRR Image
with Lap Reg.

(PSNR=25.1489dB)
0.5, 1β λ= = ( )

(i-4) L2 SRR Image
with Lap Reg.

(PSNR=24.6287dB)
1, 1β λ= = ( )

(i-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.4425dB)
0.5, 1, 1Tβ λ= = =( )

(i-5) Huber SRR Image
with Lap Reg.

(PSNR=25.5986dB)
0.5, 1, 1Tβ λ= = = ( )

(i-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.4187dB)
0.5, 0.25, 1Tβ λ= = =

(j-2)
Corrupted LR Image

(S&P:D=0.015)
(PSNR=23.6269dB) ( )

(j-3) L1 SRR Image
with Lap Reg.

(PSNR=24.5757dB)
1, 1β λ= = ( )

(j-4) L2 SRR Image
with Lap Reg.

(PSNR=23.6269dB)
1, 1β λ= = ( )

(j-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.0150dB)
1, 0.75, 1Tβ λ= = =( )

(j-5) Huber SRR Image
with Lap Reg.

(PSNR=25.1598dB)
0.5, 1, 1Tβ λ= = = ( )

(j-7) Tukey SRR Image
with Lap Reg.

(PSNR=24.9837dB)
1, 0.75, 1Tβ λ= = =

(k-2)
Corrupted LR Image

(Speckle:V=0.01)
(PSNR=23.7767dB) ( )

(k-3) L1 SRR Image
with Lap Reg.

(PSNR=24.8022dB)
0.5, 1β λ= = ( )

(k-4) L2 SRR Image
with Lap Reg.

(PSNR=23.7767dB)
1, 1β λ= = ( )

(k-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.0462dB)
0.5, 1, 1Tβ λ= = =( )

(k-5) Huber SRR Image
with Lap Reg.

(PSNR=25.1208dB)
0.5, 1, 1Tβ λ= = = ( )

(k-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.0553dB)
0.5, 0.75, 1Tβ λ= = =

(l-2)
Corrupted LR Image

(Speckle:V=0.02)
(PSNR=21.8538dB) ( )

(l-3) L1 SRR Image
with Lap Reg.

(PSNR=23.7556dB)
0.5, 1β λ= = ( )

(l-4) L2 SRR Image
with Lap Reg.

(PSNR=21.8538dB)
1, 1β λ= = ( )

(l-6) Lor. SRR Image
with Lap Reg.

(PSNR=24.2185dB)
0.5, 1, 1Tβ λ= = =( )

(l-5) Huber SRR Image
with Lap Reg.

(PSNR=24.1433dB)
0.5, 1, 1Tβ λ= = = ( )

(l-7) Tukey SRR Image
with Lap Reg.

(PSNR=24.2159dB)
1, 0.75, 1Tβ λ= = =

 

Figure 4.18 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with classical registration (Foreman 

Sequence : The 110th frame)) (Con.) 
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(m-2)
Corrupted LR Image

(Speckle:V=0.03)
(PSNR=20.5570dB) ( )

(m-3) L1 SRR Image
with Lap Reg.

(PSNR=22.9761dB)
0.5, 1β λ= = ( )

(m-4) L2 SRR Image
with Lap Reg.

(PSNR=20.5570dB)
1, 1β λ= = ( )

(m-6) Lor. SRR Image
with Lap Reg.

(PSNR=23.6115dB)
0.5, 1, 1Tβ λ= = =( )

(m-5) Huber SRR Image
with Lap Reg.

(PSNR=23.4529dB)
0.5, 1, 1Tβ λ= = = ( )

(m-7) Tukey SRR Image
with Lap Reg.

(PSNR=23.6100dB)
1, 0.75, 1Tβ λ= = =

 

Figure 4.18 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with classical registration (Foreman 

Sequence : The 110th frame)) (Con.) 
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4.4.3 Experimental Conclusion on the SRR Algorithm using Robust 
Estimation Technique with Classical Registration 

From all experimental results of both Susie Sequence (40th 
Frame) and Foreman Sequence (110th Frame) shown in Fig. 4.19 and Fig. 
4.20 respectively, all comparatively experimental results are concluded as 
follow: 

• The SRR algorithm using Huber, Lorentzian and Tukey norm with the 
classical registration gives the highest PSRN because these robust 
estimators are designed to be robust and reject outliers (registration 
error). The norms are more forgiving on outliers; that is, they should 
increase less rapidly than L1 and L2. 

• The SRR algorithm using L1 norm gives the higher PSRN than the 
SRR algorithm using L2 norm because L2 norm is more sensitive the 
outliers such as the registration error (and the L2 influence function 
increases linearly and without bound) than L1 norm.  

• The SRR algorithm using L2 norm with the classical registration can 
not increase the PSNR because the registration error is high and L2 
norm is more sensitive the outliers. 

 

 

Figure 4.19 (a) : The experimental result table of SRR algorithm using 
the proposed Registration (Susie : The 40th Frame) 
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Figure 4.19 (b) : The experimental result of SRR algorithm using the 
proposed Registration (Susie : The 40th Frame) 

 

Figure 4.20 (a) : The experimental result table of SRR algorithm using 
the proposed Registration (Foreman : The 110th Frame) 

 

Figure 4.20 (b) : The experimental result of SRR algorithm using the 
proposed Registration (Foreman : The 110th Frame)  
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4.5 Experiments on SRR Algorithm using Robust Estimation 
Technique with Fast Affine Block-Based Registration [121-122] 

The objective of this experiment is to demonstrate the 
performance of the proposed robust norm regarding to the SRR 
performance. The SRR algorithm is applied to the image sequence using 
the proposed registration (the fast affine block-based registration). This 
section presents the experiments and results obtained by the SRR 
algorithm using Huber, Lorentzian [122] and Tukey [121] norm with the 
classical registration. Later, the results of SRR algorithm using L1 and L2 
are presented for performance comparison. 

The experiment was implemented in MATLAB and the 
block size of LR images is fixed at 8x8 (or 16x16 for overlapping block), 
the search window is 9x9 for classical registration, the search window is 
7x7 for proposed registration and 5 Frames for ML estimation process. 
The 38th- 42nd frame Susie sequence and the 108th- 112th frame Foreman 
sequence in QCIF format (176x144), are used in these experiments to 
generate to reconstruct the high resolution image of the 40th frame of 
Susie and 110th frame of Foreman respectively. Both sequences have 
complex-edge characteristic. Then, to simulate the effect of camera PSF, 
the images were convolved with a symmetric Gaussian low-pass filter 
with size of 3x3 and standard deviation of one. The blurred images were 
subsampled by the factor of two in each direction (88x72) and the blurred 
subsampled images were corrupted by Gaussian noise. The LR image 
sequence synthesis algorithm is shown in Figure 4.7.  

The criterion for parameter selection in this experiment was 
to choose parameters which produce both most visually appealing results 
and highest PSNR. Therefore, to ensure fairness, each experiment was 
repeated several times with different parameters and the best result of 
each experiment was chosen [97-100]. 

 

4.5.1 Susie Sequence (The 40th Frame) 

4.5.1.1 Noiseless 

The original HR image is shown in Fig. 4.21(a-1) and one of 
corrupted LR images is shown in Fig. 4.21(a-2). Next, the result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Huber 
estimator, Lorentzian estimator and Tukey estimator are shown in Figs. 
4.21(a-3) - 4.21(a-7), respectively. From the results, Huber estimator can 
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reconstruct the noiseless image slightly better than L1 and L2 estimator 
respectively. 

4.5.1.2 AWGN (Additive White Gaussian Noise) 

This experiment is a 5 AWGN cases at SNR=25, 22.5, 20, 
17.5 and 15dB respectively and the original HR images are shown in Fig. 
4.21(b-1) - Fig. 4.21(f-1) respectively. The corrupted images at SNR=25, 
22.5, 20, 17.5 and 15dB are showed in Fig. 4.21(b-2) - Fig. 4.21(f-2) 
respectively.  

At the high SNR (SNR=25 and 22.5dB) or low noise power, 
the Huber estimator result gives slightly higher PSNR than Lorentzian 
and Tukey estimator result. All three robust estimator results have higher 
PSNR than L1 and L2 estimator result. At SNR=25dB and 22.5dB, the 
result of implementing the SRR algorithm using L1 estimator, L2 
estimator, Huber estimator, Lorentzian estimator and Tukey estimator are 
shown in Figs. 4.21(b-3) - 4.21(b-7) and Figs. 4.21(c-3) - 4.21(c-7) 
respectively. 

At low SNR (SNR=20dB, 17.5dB and 15dB) or high noise 
power, the Tukey estimator result give the best performance than Huber 
and Lorentzian estimator result. Huber, Lorentzian and Tukey estimator 
result have higher PSNR than L1 and L2 estimator result. At SNR=20dB, 
SNR=17.5dB and SNR=15dB, the result of implementing the SRR 
algorithm using L1 estimator, L2 estimator, Huber estimator, Lorentzian 
estimator and Tukey estimator are shown in Fig. 4.21(d-3) - Fig. 4.21(d-
7), Fig. 4.21(e-3) - Fig. 4.21(e-7) and Fig. 4.21(f-3) - Fig. 4.21(f-7) 
respectively. 

From the result, all proposed robust estimators give the best 
result for SRR estimating than classical L1 and L2 estimator. The result 
demonstrates the higher resistant to the registration error of the proposed 
robust estimator. 

4.5.1.3 Poisson Noise 

The original HR image is shown in Fig. 4.21(g-1) and one of 
corrupted LR images is shown in Fig. 4.21(g-2). The Lorentzian 
estimator result gives the highest PSNR. Huber, Lorentzian and Tukey 
estimator result have higher PSNR than L1 and L2 estimator result. The 
result of implementing the SRR algorithm using L1 estimator, L2 
estimator, Huber estimator, Lorentzian estimator and Tukey estimator are 
shown in Figs. 4.21(g-3) - 4.21(g-7) respectively.  
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From the result, all proposed robust estimators gives the 
better SRR result than L1 and L2 estimators because all proposed robust 
estimators are more resistant to the registration error. 

4.5.1.4 Salt&Pepper Noise 

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, 
D=0.010 and D=0.021 respectively and the original HR images are 
shown in Fig. 4.21(h-1) – Fig. 4.21(j-1) respectively. The corrupted 
images at D=0.005, D=0.010 and D=0.015 are showed in Fig. 4.21(h-2), 
Fig. 4.21(i-2) and Fig. 4.21(j-2) respectively. The results of the Huber, 
Lorentzian and Tukey have higher PSNR than these of L1 and L2 
estimators. 

At D=0.005, D=0.010 and D=0.015, the result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Huber 
estimator, Lorentzian estimator and Tukey estimator are shown in Figs. 
4.21(h-3) - 4.21(h-8),  Fig. 4.21(i-3) - 4.21(i-8) and Fig. 4.21(j-4) - 4.21(j-
8) respectively. 

From the result, all proposed robust estimators give the 
better SRR results than L1 and L2 estimators because all proposed robust 
estimators are more resistant to the registration error. 

4.5.1.5 Speckle Noise 

The last experiment is a 3 Speckle Noise cases for 40th 
frame Susie sequence at V=0.01, V=0.02 and V=0.03 respectively and 
the original HR images are shown in Figs. 4.21(k-1) –4.21(m-1) 
respectively. The corrupted images at V=0.01, V=0.02 and V=0.03 are 
showed in Fig. 4.21(k-2), Fig. 4.21(l-2) and Fig. 4.21(m-2) respectively. 
The Huber, Lorentzian and Tukey give higher PSNR than L1 and L2 
estimator results. At V=0.01, V=0.02 and V=0.03, the result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Huber 
estimator, Lorentzian estimator and Tukey estimator are shown in Figs. 
4.21(k-3) - 4.21(k-8),  Figs. 4.21(l-3) - 4.21(l-8) and Figs. 4.21(m-4) - 
4.21(m-8) respectively. 

From the result, all proposed robust estimators gives the 
better SRR results than L1 and L2 estimators because all proposed robust 
estimators are more resistant to the registration error. Moreover, L2 
estimator can slightly enhancement the image in this case because the L2 
norm is very sensitive to outliers (registration error) where the influence 
function increases linearly and without bound.  
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(a-1, ,m-1)
Original HR Image

(Frame 40)

…

(a-2)
Corrupted LR Image

(Noiseless)
(PSNR=32.1687dB) ( )

(a-3) L1 SRR Image
with Lap Reg.

(PSNR=32.1687dB)
1, 0β λ= = ( )

(a-4) L2 SRR Image
with Lap Reg.

(PSNR=32.1687dB)
1, 0β λ= = ( )

(a-6) Lor. SRR Image
with Lap Reg.

(PSNR=32.1687dB)
0.25, 0, 3Tβ λ= = =( )

(a-5) Huber SRR Image
with Lap Reg.

(PSNR=32.1687dB)
0.5, 0, 3Tβ λ= = =

(b-2)
Corrupted LR Image
(AWGN:SNR=25dB)
(PSNR=30.1487dB)

( )

(a-7) Tukey SRR Image
with Lap Reg.

(PSNR=32.1687dB)
1, 0, 3Tβ λ= = =

( )

(b-3) L1 SRR Image
with Lap Reg.

(PSNR=30.6615dB)
1, 0.75β λ= = ( )

(b-4) L2 SRR Image
with Lap Reg.

(PSNR=30.2347dB)
0.5, 1β λ= = ( )

(b-6) Lor. SRR Image
with Lap Reg.

(PSNR=30.7459dB)
0.5, 0.5, 1Tβ λ= = =( )

(b-5) Huber SRR Image
with Lap Reg.

(PSNR=30.7674dB)
0.5, 0.75, 1Tβ λ= = = ( )

(b-7) Tukey SRR Image
with Lap Reg.

(PSNR=30.7176dB)
0.5, 1, 5Tβ λ= = =

(c-2)
Corrupted LR Image

(AWGN:SNR=22.5dB)
(PSNR=29.0574dB) ( )

(c-3) L1 SRR Image
with Lap Reg.

(PSNR=30.0186dB)
0.5, 1β λ= = ( )

(c-4) L2 SRR Image
with Lap Reg.

(PSNR=29.4315dB)
0.5, 1β λ= = ( )

(c-6) Lor. SRR Image
with Lap Reg.

(PSNR=30.1686dB)
0.5, 0.75, 1Tβ λ= = =( )

(c-5) Huber SRR Image
with Lap Reg.

(PSNR=30.2086dB)
0.5, 1, 1Tβ λ= = = ( )

(c-7) Tukey SRR Image
with Lap Reg.

(PSNR=30.1220dB)
0.5, 0.5, 3Tβ λ= = =

(d-2)
Corrupted LR Image
(AWGN:SNR=20dB)
(PSNR=27.5740dB) ( )

(d-3) L1 SRR Image
with Lap Reg.

(PSNR=29.1304dB)
0.5, 1β λ= = ( )

(d-4) L2 SRR Image
with Lap Reg.

(PSNR=28.3754dB)
0.5, 1β λ= = ( )

(d-6) Lor. SRR Image
with Lap Reg.

(PSNR=29.5250dB)
0.5, 0.75, 1Tβ λ= = =( )

(d-5) Huber SRR Image
with Lap Reg.

(PSNR=29.5810dB)
0.5, 1, 1Tβ λ= = = ( )

(d-7) Tukey SRR Image
with Lap Reg.

(PSNR=29.4753dB)
0.5, 1, 1Tβ λ= = =

 

Figure 4.21 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with proposed registration  
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(e-2)
Corrupted LR Image

(AWGN:SNR=17.5dB)
(PSNR=25.7765dB) ( )

(e-3) L1 SRR Image
with Lap Reg.

(PSNR=28.0193dB)
0.5, 1β λ= = ( )

(e-4) L2 SRR Image
with Lap Reg.

(PSNR=27.0041dB)
0.5, 1β λ= = ( )

(e-6) Lor. SRR Image
with Lap Reg.

(PSNR=28.7108dB)
0.5, 1, 1Tβ λ= = =( )

(e-5) Huber SRR Image
with Lap Reg.

(PSNR=28.7605dB)
0.5, 1, 1Tβ λ= = = ( )

(e-7) Tukey SRR Image
with Lap Reg.

(PSNR=28.6284dB)
0.5, 1, 3Tβ λ= = =

(f-2)
Corrupted LR Image
(AWGN:SNR=15dB)
(PSNR=23.7393dB) ( )

(f-3) L1 SRR Image
with Lap Reg.

(PSNR=26.6879dB)
0.5, 1β λ= = ( )

(f-4) L2 SRR Image
with Lap Reg.

(PSNR=25.2707dB)
0.5, 1β λ= = ( )

(f-6) Lor. SRR Image
with Lap Reg.

(PSNR=27.7570dB)
0.5, 1, 1Tβ λ= = =( )

(f-5) Huber SRR Image
with Lap Reg.

(PSNR=27.7318dB)
0.5, 1, 1Tβ λ= = = ( )

(f-7) Tukey SRR Image
with Lap Reg.

(PSNR=27.7016dB)
1, 0.5, 1Tβ λ= = =

(g-2)
Corrupted LR Image

(Poisson)
(PSNR=27.9892dB) ( )

(g-3) L1 SRR Image
with Lap Reg.

(PSNR=29.3107dB)
0.5, 1β λ= = ( )

(g-4) L2 SRR Image
with Lap Reg.

(PSNR=28.8507dB)
0.5, 1β λ= = ( )

(g-6) Lor. SRR Image
with Lap Reg.

(PSNR=29.6334dB)
0.5, 0.75, 1Tβ λ= = =( )

(g-5) Huber SRR Image
with Lap Reg.

(PSNR=29.7337dB)
0.5, 1, 1Tβ λ= = = ( )

(g-7) Tukey SRR Image
with Lap Reg.

(PSNR=29.5506dB)
0.5, 0.5, 3Tβ λ= = =

(h-2)
Corrupted LR Image

(S&P:D=0.005)
(PSNR=29.3506dB) ( )

(h-3) L1 SRR Image
with Lap Reg.

(PSNR=30.0868dB)
1, 1β λ= = ( )

(h-4) L2 SRR Image
with Lap Reg.

(PSNR=29.5284dB)
0.5, 1β λ= = ( )

(h-6) Lor. SRR Image
with Lap Reg.

(PSNR=30.2041dB)
0.5, 1, 1Tβ λ= = =( )

(h-5) Huber SRR Image
with Lap Reg.

(PSNR=30.2545dB)
0.5, 1, 1Tβ λ= = = ( )

(h-7) Tukey SRR Image
with Lap Reg.

(PSNR=30.2005dB)
0.5, 0.75, 3Tβ λ= = =

 

Figure 4.21 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with proposed registration (Susie 

Sequence : The 40th frame)) (Con.) 
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(i-2)
Corrupted LR Image

(S&P:D=0.010)
(PSNR=27.3206dB) ( )

(i-3) L1 SRR Image
with Lap Reg.

(PSNR=28.7302dB)
1, 1β λ= = ( )

(i-4) L2 SRR Image
with Lap Reg.

(PSNR=27.8977dB)
0.5, 1β λ= = ( )

(i-6) Lor. SRR Image
with Lap Reg.

(PSNR=29.3270dB)
0.5, 1, 1Tβ λ= = =( )

(i-5) Huber SRR Image
with Lap Reg.

(PSNR=29.4394dB)
0.5, 1, 1Tβ λ= = = ( )

(i-7) Tukey SRR Image
with Lap Reg.

(PSNR=29.2660dB)
1, 0.25, 1Tβ λ= = =

(j-2)
Corrupted LR Image

(S&P:D=0.015)
(PSNR=25.5210dB) ( )

(j-3) L1 SRR Image
with Lap Reg.

(PSNR=27.5187dB)
1, 1β λ= = ( )

(j-4) L2 SRR Image
with Lap Reg.

(PSNR=26.2784dB)
0.5, 0.75β λ= = ( )

(j-6) Lor. SRR Image
with Lap Reg.

(PSNR=28.6510dB)
0.5, 1, 1Tβ λ= = =( )

(j-5) Huber SRR Image
with Lap Reg.

(PSNR=28.7497dB)
0.5, 1, 1Tβ λ= = = ( )

(j-7) Tukey SRR Image
with Lap Reg.

(PSNR=28.4864dB)
1, 0.25, 1Tβ λ= = =

(k-2)
Corrupted LR Image

(Speckle:V=0.01)
(PSNR=27.5301dB) ( )

(k-3) L1 SRR Image
with Lap Reg.

(PSNR=29.1562dB)
0.5, 1β λ= = ( )

(k-4) L2 SRR Image
with Lap Reg.

(PSNR=28.3942dB)
0.5, 1β λ= = ( )

(k-6) Lor. SRR Image
with Lap Reg.

(PSNR=29.4004dB)
0.5, 1, 1Tβ λ= = =( )

(k-5) Huber SRR Image
with Lap Reg.

(PSNR=29.4590dB)
0.5, 1, 1Tβ λ= = = ( )

(k-7) Tukey SRR Image
with Lap Reg.

(PSNR=29.3797dB)
0.5, 1, 3Tβ λ= = =

(l-2)
Corrupted LR Image

(Speckle:V=0.02)
(PSNR=25.2720dB) ( )

(l-3) L1 SRR Image
with Lap Reg.

(PSNR=27.7187dB)
0.5, 1β λ= = ( )

(l-4) L2 SRR Image
with Lap Reg.

(PSNR=26.6633dB)
0.5, 1β λ= = ( )

(l-6) Lor. SRR Image
with Lap Reg.

(PSNR=28.3557dB)
0.5, 1, 1Tβ λ= = =( )

(l-5) Huber SRR Image
with Lap Reg.

(PSNR=28.4080dB)
0.5, 1, 1Tβ λ= = = ( )

(l-7) Tukey SRR Image
with Lap Reg.

(PSNR=28.3489dB)
0.5, 1, 3Tβ λ= = =

 

Figure 4.21 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with proposed registration (Susie 

Sequence : The 40th frame)) (Con.) 
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(m-2)
Corrupted LR Image

(Speckle:V=0.03)
(PSNR=23.9860dB) ( )

(m-3) L1 SRR Image
with Lap Reg.

(PSNR=27.0925dB)
0.5, 1β λ= = ( )

(m-4) L2 SRR Image
with Lap Reg.

(PSNR=25.5199dB)
0.5, 1β λ= = ( )

(m-6) Lor. SRR Image
with Lap Reg.

(PSNR=27.9208dB)
0.5, 1, 1Tβ λ= = =( )

(m-5) Huber SRR Image
with Lap Reg.

(PSNR=27.8209dB)
0.5, 1, 1Tβ λ= = = ( )

(m-7) Tukey SRR Image
with Lap Reg.

(PSNR=28.0111dB)
1, 0.5, 1Tβ λ= = =

 

Figure 4.21 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with proposed registration (Susie 

Sequence : The 40th frame)) (Con.) 

 

4.5.2 Foreman Sequence (The 110th Frame) 

4.5.2.1 Noiseless 

The original HR image is shown in Fig. 4.22(a-1) and one of 
corrupted LR images is shown in Fig. 4.22(a-2). Next, the result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Huber 
estimator, Lorentzian estimator and Tukey estimator are shown in Figs. 
4.22(a-3) - 4.22(a-7) respectively. From the results, Huber estimator 
reconstructs the noiseless image slightly better than L1 and L2 estimator 
respectively. 

4.5.2.2 AWGN (Additive White Gaussian Noise) 

This experiment is a 5 AWGN cases at SNR=25, 22.5, 20, 
17.5 and 15dB respectively and the original HR images are shown in 
Figs. 4.22(b-1) - 4.22(f-1) respectively. The corrupted images at 
SNR=25, 22.5, 20, 17.5 and 15dB are showed in Figs. 4.22(b-2) - 4.22(f-
2) respectively.  

At the high SNR (SNR=25 and 22.5dB) or low noise power, 
the Huber estimator result gives slightly higher PSNR than Lorentzian 
and Tukey estimator result. Huber, Lorentzian and Tukey estimator result 
have higher PSNR than L1 and L2 estimator result. At SNR=25dB and 
SNR=22.5dB, the result of implementing the SRR algorithm using L1 
estimator, L2 estimator, Huber estimator, Lorentzian estimator and Tukey 
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estimator are shown in Figs. 4.22(b-3) - 4.22(b-7) and Figs. 4.22(c-3) - 
4.22(c-7) respectively. 

At low SNR (SNR=20dB, SNR=17.5dB and SNR=15dB) or 
high noise power, the Tukey estimator result give the best performance 
than Huber and Lorentzian estimator result. Huber, Lorentzian and Tukey 
estimator result have higher PSNR than L1 and L2 estimator result. At 
SNR=20dB, SNR=17.5dB and SNR=15dB, the result of implementing 
the SRR algorithm using L1 estimator, L2 estimator, Huber estimator, 
Lorentzian estimator and Tukey estimator are shown in Figs. 4.22(d-3) - 
4.22(d-7), Figs. 4.22(e-3) - 4.22(e-7) and Figs. 4.22(f-3) - 4.22(f-7) 
respectively. 

From the result, all proposed robust estimators give the best 
result for SRR estimating than classical L1 and L2 estimator. The result 
demonstrates the higher resistant to the registration error of the proposed 
robust estimator. 

4.5.2.3 Poisson Noise 

The original HR image is shown in Fig. 4.22(g-1) and one of 
corrupted LR images is shown in Fig. 4.22(g-2). The Lorentzian 
estimator result gives the highest PSNR than Huber, Tukey, L1 and L2 
estimator. However, Huber, Lorentzian and Tukey estimator result have 
higher PSNR than L1 and L2 estimator result. The result of implementing 
the SRR algorithm using L1 estimator, L2 estimator, Huber estimator, 
Lorentzian estimator and Tukey estimator are shown in Fig. 4.22(g-3) - 
Fig. 4.22(g-7) respectively. 

From the result, all proposed robust estimators gives the 
better SRR result than the classical L1 and L2 estimators because all 
proposed robust estimators are more resistant to the registration error. 

4.5.2.4 Salt&Pepper Noise 

This experiment is a 3 Salt&Pepper Noise cases at D=0.005, 
D=0.010 and D=0.015 respectively and the original HR images are 
shown in Fig. 4.22(h-1) – Fig. 4.22(j-1) respectively. The corrupted 
images at D=0.005, D=0.010 and D=0.015 are showed in Fig. 4.22(h-2), 
Fig. 4.22(i-2) and Fig. 4.22(j-2) respectively. The Huber, Lorentzian and 
Tukey give higher PSNR than L1 and L2 estimator results. 

At D=0.005, D=0.010 and D=0.015, the result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Huber 
estimator, Lorentzian estimator and Tukey estimator are shown in Figs. 
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4.22(h-3) - 4.22(h-8),  Figs. 4.22(i-3) - 4.22(i-8) and Figs. 4.22(j-4) - 
4.22(j-8) respectively. 

From the result, all proposed robust estimators gives the 
better SRR result than the classical L1 and L2 estimators because all 
proposed robust estimators are more resistant to the registration error. 

4.5.2.5 Speckle Noise 

The last experiment is a 3 Speckle Noise cases for 40th 
frame Susie sequence at V=0.01, V=0.02 and V=0.03 respectively and 
the original HR images are shown in Fig. 4.22(k-1) – Fig. 4.22(m-1) 
respectively. The corrupted images at V=0.01, V=0.02 and V=0.03 are 
showed in Fig. 4.22(k-2), Fig. 4.22(l-2) and Fig. 4.22(m-2) respectively. 
The Huber, Lorentzian and Tukey give higher PSNR than L1 and L2 
estimator results. At V=0.01, V=0.02 and V=0.03, the result of 
implementing the SRR algorithm using L1 estimator, L2 estimator, Huber 
estimator, Lorentzian estimator and Tukey estimator are shown in Figs. 
4.22(k-3) - 4.22(k-8),  Figs. 4.22(l-3) - 4.22(l-8) and Figs. 4.22(m-4) - 
4.22(m-8) respectively. 

From the result, all proposed robust estimators gives the 
better SRR result than L1 and L2 estimator because all proposed robust 
estimators can stand with the registration error. Moreover, L2 estimator 
can slightly enhancement the image in this case because the L2 norm is 
very sensitive to outliers (registration error) where the influence function 
increases linearly and without bound. 
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( )

(a-3) L1 SRR Image
with Lap Reg.

(PSNR=27.5449dB)
1, 1β λ= = ( )

(a-4) L2 SRR Image
with Lap Reg.

(PSNR=27.5449dB)
1, 1β λ= = ( )

(a-6) Lor. SRR Image
with Lap Reg.

(PSNR=27.5449dB)
1, 1, 1Tβ λ= = =( )

(a-5) Huber SRR Image
with Lap Reg.

(PSNR=27.5449dB)
1, 1, 1Tβ λ= = = ( )

(a-7) Tukey SRR Image
with Lap Reg.

(PSNR=27.5449dB)
1, 1, 1Tβ λ= = =

( )

(b-3) L1 SRR Image
with Lap Reg.

(PSNR=26.1473dB)
1, 0.5β λ= = ( )

(b-4) L2 SRR Image
with Lap Reg.

(PSNR=25.8468dB)
0.5, 1β λ= = ( )

(b-6) Lor. SRR Image
with Lap Reg.

(PSNR=26.1336dB)
0.5, 0.75, 1Tβ λ= = =( )

(b-5) Huber SRR Image
with Lap Reg.

(PSNR=26.1261dB)
0.5, 1, 1Tβ λ= = = ( )

(b-7) Tukey SRR Image
with Lap Reg.

(PSNR=26.1333dB)
0.5, 0.5, 3Tβ λ= = =

( )

(c-3) L1 SRR Image
with Lap Reg.

(PSNR=25.5834dB)
0.5, 1β λ= = ( )

(c-4) L2 SRR Image
with Lap Reg.

(PSNR=24.8508dB)
0.5, 1β λ= = ( )

(c-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.5833dB)
1, 0.75, 1Tβ λ= = =( )

(c-5) Huber SRR Image
with Lap Reg.

(PSNR=25.5818dB)
0.5, 1, 1Tβ λ= = = ( )

(c-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.5781dB)
1, 0.75, 3Tβ λ= = =

( )

(d-3) L1 SRR Image
with Lap Reg.

(PSNR=24.9608dB)
0.5, 1β λ= = ( )

(d-4) L2 SRR Image
with Lap Reg.

(PSNR=24.0387dB)
0.5, 1β λ= = ( )

(d-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.0178dB)
1, 0.75, 1Tβ λ= = =( )

(d-5) Huber SRR Image
with Lap Reg.

(PSNR=25.0356dB)
0.5, 1, 1Tβ λ= = = ( )

(d-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.0047dB)
1, 0.75, 1Tβ λ= = =

(a-1, ,m-1)
Original HR Image

(Frame 110th)

…

(a-2)
Corrupted LR Image

(Noiseless)
(PSNR=27.5449dB)

(b-2)
Corrupted LR Image
(AWGN:SNR=25dB)
(PSNR=25.8468dB)

(c-2)
Corrupted LR Image

(AWGN:SNR=22.5dB)
(PSNR=24.8508dB)

(d-2)
Corrupted LR Image
(AWGN:SNR=20dB)
(PSNR=23.7206dB)

Figure 4.22 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with proposed registration  
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( )

(e-3) L1 SRR Image
with Lap Reg.

(PSNR=24.0890dB)
0.5, 1β λ= = ( )

(e-4) L2 SRR Image
with Lap Reg.

(PSNR=22.8283dB)
0.5, 1β λ= = ( )

(e-6) Lor. SRR Image
with Lap Reg.

(PSNR=24.2726dB)
1, 0.75, 1Tβ λ= = =( )

(e-5) Huber SRR Image
with Lap Reg.

(PSNR=24.3159dB)
0.5, 1, 1Tβ λ= = = ( )

(e-7) Tukey SRR Image
with Lap Reg.

(PSNR=24.2541dB)
1, 0.75, 3Tβ λ= = =

( )

(f-3) L1 SRR Image
with Lap Reg.

(PSNR=23.1151dB)
0.5, 1β λ= = ( )

(f-4) L2 SRR Image
with Lap Reg.

(PSNR=21.1894dB)
0.5, 0.75β λ= = ( )

(f-6) Lor. SRR Image
with Lap Reg.

(PSNR=23.5018dB)
0.5, 1, 1Tβ λ= = =( )

(f-5) Huber SRR Image
with Lap Reg.

(PSNR=23.5108dB)
0.5, 1, 1Tβ λ= = = ( )

(f-7) Tukey SRR Image
with Lap Reg.

(PSNR=23.4751dB)
1, 0.75, 3Tβ λ= = =

( )

(g-3) L1 SRR Image
with Lap Reg.

(PSNR=25.7916dB)
0.5, 1β λ= = ( )

(g-4) L2 SRR Image
with Lap Reg.

(PSNR=25.1040dB)
0.5, 1β λ= = ( )

(g-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.7846dB)
0.5, 0.5, 1Tβ λ= = =( )

(g-5) Huber SRR Image
with Lap Reg.

(PSNR=25.7831dB)
0.5, 1, 1Tβ λ= = = ( )

(g-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.7817dB)
0.5, 1, 3Tβ λ= = =

( )

(h-3) L1 SRR Image
with Lap Reg.

(PSNR=25.9735dB)
1, 0.75β λ= = ( )

(h-4) L2 SRR Image
with Lap Reg.

(PSNR=25.5815dB)
0.5, 1β λ= = ( )

(h-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.9665dB)
0.5, 0.75, 1Tβ λ= = =( )

(h-5) Huber SRR Image
with Lap Reg.

(PSNR=25.9626dB)
0.5, 1, 1Tβ λ= = = ( )

(h-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.9673dB)
0.5, 0.5, 3Tβ λ= = =

(e-2)
Corrupted LR Image

(AWGN:SNR=17.5dB)
(PSNR=22.1395dB)

(f-2)
Corrupted LR Image
(AWGN:SNR=15dB)
(PSNR=20.3124dB)

(g-2)
Corrupted LR Image

(Poisson)
(PSNR=25.0577dB)

(h-2)
Corrupted LR Image

(S&P:D=0.005)
(PSNR=25.5815dB)

 

Figure 4.22 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with proposed registration 

(Foreman Sequence : The 110th frame)) (Con.) 
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( )

(i-3) L1 SRR Image
with Lap Reg.

(PSNR=25.3920dB)
0.5, 1β λ= = ( )

(i-4) L2 SRR Image
with Lap Reg.

(PSNR=24.8303dB)
0.5, 1β λ= = ( )

(i-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.4463dB)
0.5, 0.75, 1Tβ λ= = =( )

(i-5) Huber SRR Image
with Lap Reg.

(PSNR=25.4538dB)
0.5, 1, 1Tβ λ= = = ( )

(i-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.4355dB)
0.5, 0.75, 3Tβ λ= = =

( )

(j-3) L1 SRR Image
with Lap Reg.

(PSNR=24.8592dB)
1, 1β λ= = ( )

(j-4) L2 SRR Image
with Lap Reg.

(PSNR=24.2964dB)
0.5, 1β λ= = ( )

(j-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.0997dB)
0.5, 0.75, 1Tβ λ= = =( )

(j-5) Huber SRR Image
with Lap Reg.

(PSNR=25.1018dB)
0.5, 1, 1Tβ λ= = = ( )

(j-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.0210dB)
0.5, 1, 5Tβ λ= = =

( )

(k-3) L1 SRR Image
with Lap Reg.

(PSNR=25.0185dB)
0.5, 1β λ= = ( )

(k-4) L2 SRR Image
with Lap Reg.

(PSNR=24.1172dB)
0.5, 1β λ= = ( )

(k-6) Lor. SRR Image
with Lap Reg.

(PSNR=25.0480dB)
0.5, 1, 1Tβ λ= = =( )

(k-5) Huber SRR Image
with Lap Reg.

(PSNR=25.0572dB)
0.5, 1, 1Tβ λ= = = ( )

(k-7) Tukey SRR Image
with Lap Reg.

(PSNR=25.0546dB)
0.5, 0.75, 1Tβ λ= = =

( )

(l-3) L1 SRR Image
with Lap Reg.

(PSNR=24.0958dB)
0.5, 1β λ= = ( )

(l-4) L2 SRR Image
with Lap Reg.

(PSNR=22.7284dB)
0.5, 1β λ= = ( )

(l-6) Lor. SRR Image
with Lap Reg.

(PSNR=24.2349dB)
0.5, 1, 1Tβ λ= = =( )

(l-5) Huber SRR Image
with Lap Reg.

(PSNR=24.2759dB)
0.5, 1, 1Tβ λ= = = ( )

(l-7) Tukey SRR Image
with Lap Reg.

(PSNR=24.2257dB)
1, 0.75, 3Tβ λ= = =

(i-2)
Corrupted LR Image

(S&P:D=0.010)
(PSNR=24.6287dB)

(j-2)
Corrupted LR Image

(S&P:D=0.015)
(PSNR=23.6269dB)

(k-2)
Corrupted LR Image

(Speckle:V=0.01)
(PSNR=23.7767dB)

(l-2)
Corrupted LR Image

(Speckle:V=0.02)
(PSNR=21.8538dB)

 

Figure 4.22 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with proposed registration 

(Foreman Sequence : The 110th frame)) (Con.) 
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( )

(m-3) L1 SRR Image
with Lap Reg.

(PSNR=23.3854dB)
0.5, 1β λ= = ( )

(m-4) L2 SRR Image
with Lap Reg.

(PSNR=21.7708dB)
0.5, 1β λ= = ( )

(m-6) Lor. SRR Image
with Lap Reg.

(PSNR=23.6408dB)
0.5, 1, 1Tβ λ= = =( )

(m-5) Huber SRR Image
with Lap Reg.

(PSNR=23.6974dB)
0.5, 1, 1Tβ λ= = = ( )

(m-7) Tukey SRR Image
with Lap Reg.

(PSNR=23.6252dB)
1, 0.75, 3Tβ λ= = =

(m-2)
Corrupted LR Image

(Speckle:V=0.03)
(PSNR=20.5570dB)

 

Figure 4.22 : The experimental result of the SRR algorithm using 
proposed robust estimation technique with proposed registration 

(Foreman Sequence : The 110th frame)) (Con.) 
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4.4.5 Experimental Conclusion on the SRR Algorithm using Robust 
Estimation Technique with Fast Affine Block-Based Registration  

From all experimental results of both Susie Sequence (40th 
Frame) and Foreman Sequence (110th Frame) shown in Fig. 4.23 and Fig. 
4.24 respectively, all comparatively experimental results are concluded as 
follow: 

• The SRR algorithm using Huber, Lorentzian and Tukey norm with the 
proposed registration gives the highest PSRN because these robust 
estimators are designed to be robust and reject outliers (registration 
error). The norms are more forgiving on outliers; that is, they should 
increase less rapidly than L1 and L2. 

• The SRR algorithm using L1 norm gives the higher PSRN than the 
SRR algorithm using L2 norm because L2 norm is more sensitive the 
outliers such as the registration error (and the L2 influence function 
increases linearly and without bound) than L1 norm.  

• The SRR algorithm using L2 norm with the proposed registration 
gives the lowest PSRN because L2 norm is more sensitive the outliers 
such as the registration error. 

 

 

Figure 4.23 (a) : The experimental result table of SRR algorithm using 
the proposed Registration (Susie : The 40th Frame) 
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Figure 4.23 (b) : The experimental result of SRR algorithm using the 
proposed Registration (Susie : The 40th Frame) 

 

Figure 4.24 (a) : The experimental result table of SRR algorithm using 
the proposed Registration (Foreman : The 110th Frame) 

 

Figure 4.24 (b) : The experimental result of SRR algorithm using the 
proposed Registration (Foreman : The 110th Frame)  



CHAPTER V 
CONCLUSIONS 

This dissertation presents the highly accurate sub-pixel 
images registration and three robust norm estimators for the SRR 
framework. Several images and noise models were tested for their 
effectiveness. The performance was analyzed both in terms of the PSNR 
and visually appealing results. 

 

5.1 Conclusions of the Dissertation 

In this dissertation, the highly accurate sub-pixel images 
registration and robust norm estimators are proposed and applied to SRR 
algorithms. First, this dissertation proposed a novel M3SS image 
registration for fast affine block-based registration. M3SS exploits the 
benefits of both the affine block-based motion estimation and 3SS. The 
experiment investigates the accuracy performance of the proposed 
registration (affine block-based) compared with the classical registration 
(translation block-based). This experiment intends to study the 
registration accuracy that is traditionally used in the SRR algorithm and 
the proposed registration accuracy. Three standard video sequences 
(Carphone, Foreman and Stefan) in QCIF format (176x144) were used as 
the test sequences that can be categorized by moving characteristic. First, 
Carphone sequence has only a moving foreground but the background is 
almost stationary. Second, Foreman sequence has both slightly moving 
foreground and background. Finally, Stefan sequence has both 
dramatically moving foreground and background. Although the proposed 
sub-pixel registration algorithm requires higher computation than the 
classical algorithm but the proposed algorithm has far better PSRN 
performance in our experiment. The affine block-based registration 
algorithm clearly gives a higher accuracy than the classical algorithm 
both objectively and subjectively. By using this proposed registration 
algorithm, the super-resolution algorithm, which is described later, can be 
applied on the general sequence that have complex motions such as 
Foreman and Susie sequence. 

Second, both the proposed registration and the classical 
registration the SRR algorithm were examined in the SRR framework 
using L1 and L2 norms for evaluating the registration impact to SRR 
performance. For the same norm estimation technique, the SRR algorithm 
with the proposed registration gives the higher PSRN than the SRR 
algorithm with the classical registration. Next, The SRR algorithm using 
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L1 norm with the proposed registration gives the highest PSRN. The SRR 
algorithm using L1 norm gives the higher PSRN than the SRR algorithm 
using L2 norm because L2 norm is more sensitive the outliers such as the 
registration error (and the L2 influence function increases linearly and 
without bound) than L1 norm. Finally, the SRR algorithm using L2 norm 
with the classical registration can not enhance measured image because 
the registration error is high and L2 norm is more sensitive the outliers. 

Third, this dissertation propose an novel approach using a 
novel robust estimation norm function (Huber, Lorentzian and Tukey 
norm function) for SRR and the proposed robust SRR can be effectively 
applied on the images that are corrupted by various noise models. 
Therefore, this experiment is examined how the estimation techniques 
impact to the SRR performance by ignoring the registration error. (All 
corrupted low resolution images are synthesized from the same original 
high resolution image.) From the experimental result, the SRR algorithm 
using Huber and Lorentzian norm with the proposed registration gives the 
highest PSRN especially for high power noise. For Salt&Pepper Noise 
cases, the Huber, Lorentzian and Tukey estimator give the far better 
reconstruction than L1 and L2 estimator because these robust estimators 
are designed to be robust and reject outliers. The norms are more 
forgiving on outliers; that is, they should increase less rapidly than L2. 
Next, The SRR algorithm using Tukey norm gives the lower PSRN than 
the Huber, Lorentzian and L2 norm because Tukey norm is excessively 
robust against the outliers (and the Tukey influence function equal zero) 
therefore some information losses. Finally, The SRR algorithm using L1 
norm with the proposed registration gives the lowest PSRN because the 
L1 norm is excessively robust against the outliers. 

Forth, this dissertation examines the performance of the SRR 
algorithm using proposed estimation norms (Huber, Lorentzian and 
Tukey norm function) when the SRR algorithm is used for the real image 
sequence. The 38th- 42nd frame Susie sequence and the 108th- 112th frame 
Foreman sequence are used in these experiments to generate the super-
resolution image. Hence, the SRR algorithm for this experiment is used 
the classical registration process (translational block-based). From the 
experimental result, the SRR algorithm using Huber, Lorentzian and 
Tukey norm with the classical registration gives the highest PSRN 
because these robust estimators are designed to be robust and reject 
outliers (registration error). The norms are more forgiving on outliers; 
that is, they should increase less rapidly than L1 and L2. Next, The SRR 
algorithm using L1 norm gives the higher PSRN than the SRR algorithm 
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using L2 norm because L2 norm is more sensitive the outliers such as the 
registration error (and the L2 influence function increases linearly and 
without bound) than L1 norm. Finally, L2 estimator fails to enhance the 
image in the inaccurate registration because the L2 norm is very sensitive 
to outliers (registration error) where the influence function increases 
linearly and without bound. 

Finally, this dissertation examines the performance of the 
SRR algorithm using proposed estimation norms (Huber, Lorentzian and 
Tukey norm function) and using the proposed registration (affine block-
based) when the SRR algorithm is used for the real image sequence. . The 
38th- 42nd frame Susie sequence and the 108th- 112th frame Foreman 
sequence are used in these experiments to generate the super-resolution 
image. From the experimental result, The SRR algorithm using Huber, 
Lorentzian and Tukey norm with the proposed registration gives the 
highest PSRN because these robust estimators are designed to be robust 
and reject outliers (registration error). The norms are more forgiving on 
outliers; that is, they should increase less rapidly than L1 and L2. Next, 
The SRR algorithm using L1 norm gives the higher PSRN than the SRR 
algorithm using L2 norm because L2 norm is more sensitive the outliers 
such as the registration error (and the L2 influence function increases 
linearly and without bound) than L1 norm. L2 estimator can slightly 
enhancement the image because the registration is more accurate than the 
result from the translation registration. The L2 norm is very sensitive to 
outliers (registration error) where the influence function increases linearly 
and without bound therefore the L1 estimator give the better result for 
SRR estimating than L2. 
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5.2 Contributions of the Dissertation 

In this dissertation, we proposed a regularized ML 
framework for solving SRR problems. This framework helped us 
construct a well-defined description of several aspects of this problem 
from an estimation theoretic point of view, allowing us to make 
fundamental contributions to both the methodology and the science of 
image fusion, reconstruction, and enhancement. 

 

5.2.1 A Comprehensive Survey of the Literature on the SRR  

In Chapter (1), this dissertation reviews a comprehensive 
survey of the literature on the SRR (Super-Resolution Reconstruction) 
algorithms and related image restoration algorithms in the last two 
decades. This work is significant in that it covers virtually the entire 
literature and categorizes existing multiframe restoration methods 
according to their common characteristics in a systematic framework, 
drawing together research which utilizes a broad variety of approaches.  

Moreover, this dissertation reviews traditional image 
registrations for SRR algorithm in the last two decades. Later, we 
described a general theory regarding SRR algorithm using regularized 
ML (L1 and L2 estimator) of a high-quality image from a set of low-
resolution noisy and blurred images. Moreover, several classical SRR 
regularized functions, such as Laplacian, MRF and BTV, and its solutions 
are presented in Chapter 2. 

 

5.2.2 The Highly Accurate Sub-Pixel Images Registration on the SRR  

This dissertation propose a novel image registration (motion 
estimation) algorithm which describes the complex motion more 
efficiently and gives a very accurate result, affine block-based motion 
estimation described in Section 3.1.1. M3SS algorithm, that is designed 
to reduce a computational load in section 3.1.2, is proposed. Moreover, 
the range of affine parameter (motion vector) are proposed in Eq.(3.3) - 
Eq.(3.3) for the search window for the 7x7 displacement window 
(translational deformation) and 20±  degree (rotation, extraction or 
expansion deformation). From the experimental result, three standard 
video sequences (Carphone, Foreman and Stefan) in QCIF format 
(176x144) were used as the test sequences which can be categorized by 
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moving characteristic. The proposed registration has a higher accuracy 
than the classical registration in both subjective and objective 
measurement as described in Section 4.1. 

Later, the proposed registration is incorporated to the SRR 
Regularized ML framework thus an observation model for SRR is 
improved under affine block-based motion. Consequently, the SRR using 
the proposed registration can be applied on real image sequences such as 
Susie and Foreman sequences. The performance of the SRR algorithms is 
higher than the SRR using the classical registration as shown in Section 
4.2. 

 

5.2.3 The Robust Estimations on the SRR  

This dissertation proposes the robust norm estimation for 
SRR algorithm that can be applied on several noise models. The SRR 
algorithm using proposed robust norms (Huber and Lorentzian norm 
function) give higher PSNR than the SRR algorithm using L1 or L2 
norms because these robust estimators are designed to be robust and 
reject outliers as shown in Section 4.3. From the experimental result, 
SRR algorithm using the Huber norm gives highest PSNR for the low 
noise power (or low power of outliers), SRR algorithm using the 
Lorentzian norm gives highest PSNR for the moderate noise power (or 
moderate power of outliers) and SRR algorithm using the Tukey norm 
gives highest PSNR for the high noise power (or high power of outliers). 

Next, this dissertation proposes the iterative robust SRR 
algorithm (Huber, Lorentzian and Tukey norm function) using the 
classical registration for the real image sequence such as Susie and 
Foreman Sequence. Not only does the SRR algorithm can be applied on 
the several noise models but this SRR algorithm can be apply on the real 
sequences as well. The classical registration gives the registration error 
severely hence the SRR algorithm using L2 norm with the classical 
registration can not enhance measured image. However, the SRR 
algorithm using the proposed norm gives the highest PSNR because these 
robust estimators are designed to be robust and reject outliers (such as the 
registration noise) as shown in Section 4.4. 
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5.2.4 The Highly Accurate Sub-Pixel Images Registration and the 
Robust Estimations on the SRR 

This dissertation proposed the iterative robust SRR 
algorithm using the affine block-based registration for the real image 
sequence such as Susie and Foreman Sequence. Therefore, this SRR 
algorithm can be applied on both any noise models and on the real image 
sequences. The proposed registration gives the registration error 
moderately thus the SRR algorithm using L2 norm with the proposed 
registration can enhance measured image. However, the SRR algorithm 
using the proposed norm gives the better PSNR because these robust 
estimators are designed to be robust and reject outliers (such as the 
registration noise) as shown in Section 4.5. 

 

5.2.5 Program Development  

Based on the material presented in this dissertation, we have 
developed a Matlab based software. The main objective of this software 
tool is the implementation and comparison of several registration 
techniques and SRR algorithms. In particular, the techniques described in 
this dissertation and several references therein are includes. 

• Image Registration (Motion Estimation) Technique   

• The user is able to specify the type of norm estimation such as L1, L2, 
Huber, Lorentzian or Tukey. 

• The user is able to specify the type of regularized functions such are 
Laplacian, Huber-Laplacian, Lorentzian-Laplacian, Tukey- Laplacian, 
MRF (Markov Random Field), HMRF (Huber MRF) or BTV (Bi-
Total Variance). 

• The parameters of the imaging system may be specified by the user. 

 The size of image block 

 The PSF or point spread function 

 The noise model (such as AWGN, Poisson, Salt&Pepple or 
Speckle) and noise intensity 
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• The parameter of the SRR algorithm using the regularized ML 
approach may be specified by the user. 

 The size of image block 

 The Regularized Parameter 

 The step size in the direction of the gradient. 

 The norm constant parameters 
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5.3 Future Research on SRR algorithms 

• Several parameters (such as Regularized Parameter, step size, norm 
constant parameter) are still manually specified. The optimal values 
are found by experiments for most visually appealing results with 
highest PSNR. Automatic parameter specification is necessary for the 
practical SRR algorithms in the future research. 

• One important extension for our algorithms is the incorporation of 
blur identification algorithms in the SRR algorithm because many 
single-frame blind deconvolution algorithms have been suggested in 
the last two decades. 

• Although the sub-pixel registrations are an essential part of SRR 
algorithms and several sub-pixel registrations [3, 6, 18, 78, 110] have 
been proposed in the last two decades, Only few simple sub-pixel 
registrations have been used in the SRR algorithm such as global 
translation [97-100], global affine [25], block-based translation. 
Therefore, more realistic and higher accurate registrations are still 
required for higher accurate result in the SRR algorithms.  

• Few SRR algorithms have addressed resolution enhancement of 
compressed video sequences. Compression artifacts can dramatically 
decrease the performance of any SRR algorithms. Considering 
compression color artifacts in designing novel multiframe 
demosaicing algorithms is the part of our ongoing work. 

• Computational resources are becoming progressively more powerful 
and cheaper therefore this makes it feasible to implement algorithms 
which were previously prohibitive in terms of their computational 
complexity. The likely result will be the development of more 
accurate motion estimation methods, more realistic observation and 
prior models and more powerful restoration frameworks leading 
ultimately to improvements in restored image quality. 
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