

ระเบียบวิธีปริพันธอันตะรวมกับการกระจายเชบีเชฟสำหรับการหาผลเฉลยเชิงตัวเลขของ
สมการเชิงอนุพันธไมเชิงเสนและอันดับเศษสวน

นายอำพล ดวงแปน

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต
สาขาวิชาคณิตศาสตรประยุกตและวิทยาการคณนา
ภาควิชาคณิตศาสตรและวิทยาการคอมพิวเตอร
คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2562

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

FINITE INTEGRATION METHOD WITH CHEBYSHEV EXPANSION FOR

FINDING NUMERICAL SOLUTION OF NONLINEAR AND FRACTIONAL

ORDER DIFFERENTIAL EQUATIONS

Mr. Ampol Duangpan

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Applied Mathematics and

Computational Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2019

Copyright of Chulalongkorn University

Dissertation Title FINITE INTEGRATION METHOD WITH CHEBYSHEV

EXPANSION FOR FINDING NUMERICAL SOLUTION

OF NONLINEAR AND FRACTIONAL ORDER DIFFER-

ENTIAL EQUATIONS

By Mr. Ampol Duangpan

Field of Study Applied Mathematics and Computational Science

Dissertation Advisor Associate Professor Ratinan Boonklurb, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Doctoral Degree

. Dean of the Faculty of Science

(Professor Polkit Sangvanich, Ph.D.)

DISSERTATION COMMITTEE

. Chairman

(Associate Professor Khamron Mekchay, Ph.D.)

. Dissertation Advisor

(Associate Professor Ratinan Boonklurb, Ph.D.)

. Examiner

(Associate Professor Anusorn Chonwerayuth, Ph.D.)

. Examiner

(Associate Professor Petarpa Boonserm, Ph.D.)

. External Examiner

(Assistant Professor Tawikan Treeyaprasert, Ph.D.)

iv

อำพล ดวงแปน : ระเบียบวิธีปริพันธอันตะรวมกับการกระจายเชบีเชฟสำหรับการหา
ผลเฉลยเชิงตัวเลขของสมการเชิงอนุพันธไมเชิงเสนและอันดับเศษสวน. (FINITE INTE-

GRATION METHOD WITH CHEBYSHEV EXPANSION FOR FINDING NUMERI-

CAL SOLUTION OF NONLINEAR AND FRACTIONAL ORDER DIFFERENTIAL

EQUATIONS) อ.ที่ปรึกษาวิทยานิพนธหลัก : รศ.ดร. รตินันท บุญเคลือบ, 110 หนา.

ในวิทยานิพนธฉบับนี้ เราพัฒนาระเบียบวิธีปริพันธอันตะโดยใชการกระจายพหุนามเชบ-ี

เชฟ สำหรับการแกสมการเชิงอนุพันธไมเชิงเสนในหนึ่งและสองมิติ ระเบียบวิธีปริพันธอันตะที่
พัฒนาขึ้นนี้สามารถใชงานไดบนโดเมนใด ๆ จากนั้นเราใชระเบียบวิธีปริพันธอันตะที่พัฒนาขึ้น
จัดการกับตัวแปรของปริภูมิ และใชอัตราสวนเชิงผลตางสืบเนื่องไปขางหนาจัดการกับอนุพันธ
ในตัวแปรของเวลา เพื่อสรางขั้นตอนวิธีเชิงตัวเลขไปใชแกปญหาไมเชิงเสนสามปญหา ประกอบ
ดวย สมการเบอรเกอรที่มีคลื่นกระแทกในหนึ่งมิติ สมการเบนจามิน-โบนา-มาโฮนี-เบอรเกอร
เชิงเศษสวนของเวลา และสมการปวสซงไมเชิงเสนในสองมิติบนโดเมนไมปรกติ นอกจากนี้ ยัง
ไดทดสอบขั้นตอนวิธีของเราดวยการทดลองแกปญหาหลายตัวอยาง แลวเปรียบเทียบผลลัพธ
โดยประมาณที่ไดจากขั้นตอนวิธีที่เราเสนอและวิธีอื่น ๆ กับผลเฉลยเชิงวิเคราะห ตัวอยางเหลา
นั้นแสดงใหเห็นวา ขั้นตอนวิธีที่นำเสนอ ปรับปรุงคาประมาณของผลเฉลยใหแมนยำขึ้นอยางมี
นัยสำคัญ และใชตนทุนในการคำนวณนอย

ภาควิชาคณิตศาสตรและ. ลายมือชื่อนิสิต .

. .วิทยาการคอมพิวเตอร. ลายมือชื่อ อ.ที่ปรึกษาหลัก

สาขาวิชา .คณิตศาสตรประยุกต.
. .และวิทยาการคณนา

ปการศึกษา2562. .

v

6072835223 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE

KEYWORDS : FINITE INTEGRATION METHOD / CHEBYSHEV EXPANSION / TIME-

FRACTIONAL ORDER DERIVATIVE / POISSON EQUATION / BURGERS’ EQUATION

AMPOL DUANGPAN : FINITE INTEGRATION METHOD WITH CHEBYSHEV EX-

PANSION FOR FINDING NUMERICAL SOLUTION OF NONLINEAR AND FRAC-

TIONAL ORDER DIFFERENTIAL EQUATIONS. ADVISOR : ASSOC. PROF. RATI-

NAN BOONKLURB, Ph.D., 110 pp.

In this dissertation, we develop the finite integration method by using Chebyshev

polynomial expansion (FIM-CPE) for solving one- and two-dimensional nonlinear differen-

tial equations. The developed FIM-CPE can be used on any domains. Then, we utilize our

FIM-CPE to deal with the spatial variables and the forward difference quotient to handle

the derivative involving temporal variable. Thus, the numerical algorithms based on this

idea are devised to overcome three nonlinear problems including one-dimensional Burg-

ers’ equation with shock wave, time-fractional Benjamin-Bona-Mahony-Burgers’ equation

and two-dimensional nonlinear Poisson equation over irregular domains. Moreover, we

examine our algorithms with several experimental examples by comparing the approxi-

mate results obtained by our methods and other methods with their analytical solutions.

Those examples show that the proposed algorithms provide a significant improvement of

the approximate solution in terms of accuracy with low computational cost.

Department :Mathematicsand. Student’s Signature .

.ComputerScience. Advisor’s Signature .

Field of Study :Applied.Mathematics.and .

.ComputationalScience. . . .

Academic Year :2019. .

vi

ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude to my dissertation advisor, As-

sociate Professor Ratinan Boonklurb, Ph.D. for the continuous supporting my studies

since the master degree until the doctoral degree. His encouragement, motivation and

guidance helped me during the time for writing researches and this dissertation until it

was accomplished. I further would like to thank all of my dissertation committees: Asso-

ciate Professor Khamron Mekchay, Ph.D., Associate Professor Anusorn Chonwerayuth,

Ph.D., Associate Professor Petarpa Boonserm, Ph.D. and Assistant Professor Tawikan

Treeyaprasert, Ph.D., for their insightful comments and suggestions which motivated me

to extend my research from various perspectives.

Moreover, I would like to express my special appreciation and thanks to my financial

sponsors, “The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholar-

ship” for the scholarship. My sincere thanks also go to the Department of Mathematics

and Computer Science, Faculty of Science, Chulalongkorn University which provided me

funding to present my research on international conference and an opportunity that I

received throughout my graduate studies.

Finally, I would like to thank my family for supporting me throughout writing this

dissertation. Also, I wish to express my gratitude to all friends and colleagues who stayed

with me and provided their encouragement, relaxation, great suggestions and supports in

many ways during a hard time studying in my doctoral degree.

CONTENTS
Page

ABSTRACT IN THAI . iv

ABSTRACT IN ENGLISH . v

ACKNOWLEDGEMENTS . vi

CONTENTS . vii

LIST OF TABLES . ix

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation and Literature Surveys . 1

1.2 Research Objectives . 7

1.3 Dissertation Overview . 7

2 FIM WITH CHEBYSHEV EXPANSION . 8

2.1 Chebyshev Polynomials . 8

2.2 Chebyshev Expansion . 12

2.3 Kronecker Product . 17

2.4 Developed FIM-CPE . 18

2.4.1 One-Dimensional Chebyshev Integration Matrices 18

2.4.2 Two-Dimensional Chebyshev Integration Matrices 21

3 BURGERS’ EQUATION WITH SHOCK WAVE 28

3.1 Burgers’ Equation . 28

3.2 Algorithm for Solving Burgers’ Equation . 29

3.3 Numerical Examples for Testing Algorithm 1 33

3.4 Acceleration of Algorithm 1 . 48

4 TIME-FRACTIONAL BBMB EQUATION 53

4.1 Benjamin-Bona-Mahony-Burgers Equation 53

4.2 Time-Fractional Order Derivative . 54

4.3 Algorithm for Solving Time-Fractional BBMB Equation 55

4.4 Numerical Examples for Testing Algorithm 2 60

viii

CHAPTER Page

5 NONLINEAR POISSON EQUATION . 68

5.1 Poisson-Type Equation . 68

5.2 Algorithm for Solving Nonlinear Poisson Equation 70

5.3 Numerical Examples for Testing Algorithm 3 78

6 CONCLUSIONS AND DISCUSSIONS . 92

6.1 Conclusions . 92

6.2 Future works . 95

REFERENCES . 96

APPENDICES . 102

BIOGRAPHY . 110

ix

LIST OF TABLES

Table Page

3.1 MAE at different M and ∆t of Example 3.1 . 34

3.2 Comparison of absolute errors of Example 3.1 . 35

3.3 MAE at different M and ∆t of Example 3.2 . 38

3.4 Comparison of absolute errors of Example 3.2 . 38

3.5 MRE at different M and ∆t of Example 3.3 . 41

3.6 Comparison of error norms at different viscosity ν of Example 3.3 41

3.7 Comparison of error norms at different nodes M of Example 3.3 41

3.8 MAE at different M and ∆t of Example 3.4 . 43

3.9 Comparison of error norms at different times T of Example 3.4 44

3.10 Convergence orders p using forward difference of Examples 3.1 - 3.4 49

3.11 Convergence orders p using Crank-Nicolson of Examples 3.1 - 3.4 52

4.1 MAE at various M and ∆t for α = 0.5 of Example 4.1 61

4.2 MAE at various ∆t for α = 0.5 and M = 40 and of Example 4.1 61

4.3 MAE at various α for ∆t = 0.001 and M = 40 of Example 4.1 61

4.4 MAE at various M for α = 0.5 and ∆t = 0.01 of Example 4.2 62

4.5 MAE at various ∆t for α = 0.5 and M = 40 of Example 4.2 62

4.6 MAE at various α for ∆t = 0.001 and M = 40 of Example 4.2 63

4.7 MAE at various M for α = 0.5 and ∆t = 0.01 of Example 4.3 64

4.8 MAE at various ∆t for α = 0.5 and M = 40 of Example 4.3 64

4.9 MAE at various α for ∆t = 0.001 and M = 40 of Example 4.3 64

4.10 Convergence orders p at each fractional order α of Example 4.1 66

4.11 Convergence orders p at each fractional order α of Example 4.2 66

4.12 Convergence orders p at each fractional order α of Example 4.3 66

5.1 MAE for each discretizing H at different tolerances of Example 5.1 79

5.2 MAE for each discretizing H at different tolerances of Example 5.2 81

5.3 MAE for each discretizing H at different tolerances of Example 5.3 83

5.4 MAE for each discretizing H at different tolerances of Example 5.4 84

5.5 RMSE for each discretizing H at TOL = 10−5 of Example 5.5 86

x

5.6 AME and RMSE for each discretizing H at TOL = 10−2 of Example 5.5 . . . 87

5.7 Absolute error at different points (x, y) of Example 5.6 88

5.8 MAE for each discretizing H at different tolerances of Example 5.7 90

xi

LIST OF FIGURES

Figure Page

2.1 Chebyshev polynomials Tn(x) for n ∈ {0, 1, 2, 3, 4, 5} 8

2.2 Plotting of the first few polynomials on [−1, 1] 13

2.3 Plotting of the polynomials w1(x) and w2(x) on [−1, 1] 15

2.4 The indices of the grid points globally and locally 21

3.1 Physical behavior of our solution in Example 3.1 35

3.2 Behavior of solutions for small values ν in Example 3.1 36

3.3 Profiles of our solution at small viscosity ν in Example 3.1 37

3.4 Physical behavior of our solution in Example 3.2 39

3.5 Behavior of solutions for small values ν in Example 3.2 39

3.6 Profiles of our solution at small viscosity ν in Example 3.2 40

3.7 Physical behavior of our solution in Example 3.3 42

3.8 Profiles of our solution at small viscosity ν in Example 3.3 42

3.9 Physical behavior of our solution in Example 3.4 44

3.10 Profiles of our solution at small viscosity ν in Example 3.4 44

3.11 Profiles of our numerical solution for ν = 1 in Example 3.5 45

3.12 Profiles of our numerical solution for ν = 0.1 in Example 3.5 46

3.13 Profiles of our numerical solution for ν = 0.01 in Example 3.5 46

3.14 Profiles of our numerical solution for ν = 0.1 in Example 3.6 47

3.15 Profiles of our numerical solution for ν = 0.01 in Example 3.6 47

3.16 Graphs of linearly convergence orders p of Examples 3.1 - 3.4 49

3.17 Graphs of quadratically convergence orders p of Examples 3.1 - 3.4 52

4.1 Graphical behavior of our solution in Example 4.1 61

4.2 Graphical behavior of our solution in Example 4.2 63

4.3 Graphical behavior of our solution in Example 4.3 64

4.4 Graphical convergence order p of Example 4.1 67

4.5 Graphical convergence order p of Example 4.2 67

4.6 Graphical convergence order p of Example 4.3 67

5.1 Discretizing each side of boundary over [a, b]× [c, d] 74

xii

5.2 Order and rate of convergences of Example 5.1 80

5.3 Pentagonal domain and numerical solution of Example 5.1 80

5.4 Order and rate of convergences of Example 5.2 81

5.5 Circular domain and numerical solution of Example 5.2 82

5.6 Order and rate of convergences of Example 5.3 83

5.7 L-shaped domain and numerical solution of Example 5.3 83

5.8 Order and rate of convergences of Example 5.4 85

5.9 Butterfly domain and numerical solution of Example 5.4 85

5.10 Order and rate of convergences of Example 5.5 87

5.11 Peanut-shaped domain and numerical solution of Example 5.5 87

5.12 Order and rate of convergences of Example 5.6 89

5.13 Elliptic domain and numerical solution of Example 5.6 89

5.14 Order and rate of convergences of Example 5.7 91

5.15 Elliptic domain and numerical solution of Example 5.7 91

CHAPTER I

INTRODUCTION

1.1 Motivation and Literature Surveys

A differential equation is a mathematical equation depending on the values of func-

tions and their derivatives. Generally, it can be divided into several types such as ordinary

and partial; or linear and nonlinear differential equations. In mathematics, the ordinary

and partial differential equations (ODEs and PDEs) are the differential equations corre-

sponding to the functions of single and multiple variables, respectively. The nonlinear

differential equation is also the differential equation that is not linear in the unknown

function and its derivatives. Moreover, these differential equations are used to describe

various principles and behaviors of natural phenomena. Especially, most of the real inci-

dents that appear in our daily life are inborn nonlinear. The applications of the nonlinear

differential equations play a prominent role in many disciplines including mathematics,

physics, economics and engineering.

A fractional differential equation (FDE) is also another type of differential equations

used in many fields of science and engineering. In 1695, Leibniz and L’Hôpital [50] have

been first introduced the basic concept of FDE which its order of derivative can be taken as

an integer or rational number in (0, 1]. The applications of FDE have occurred in various

real-world problems, such as oscillating dynamical systems [2], thermal conductivity [32],

quantum models [35], diffusion processes [44], rheological models [66], etc.

There are many interesting issues in the forms of nonlinear PDEs or FDEs. In this

dissertation, we mainly focus on two nonlinear PDEs including one-dimensional Burgers’

equation with a shock wave and two-dimensional nonlinear Poisson equation over irreg-

ular domains and one nonlinear FDE, namely, time-fractional Benjamin-Bona-Mahony-

Burgers’ (BBMB) equation. These nonlinear PDEs and FDE have numerous applications

2

in the real world. In order to understand these problems as well as further apply them

in practical life, the finding of their solutions is important. However, it is usually very

difficult to solve these problems analytically. Thus, numerical methods play an essential

role in seeking approximate solutions of these nonlinear problems.

The first interesting issue of nonlinear PDEs in this dissertation is the Burgers’

equation that was first introduced by Bateman [7] in 1915. He mentioned that this kind

of equation was worthy of study and he gave its steady solutions. In 1948, Burgers [15]

studied a mathematical model for turbulence using the equation considered in [7]. This

model is then known as “Burgers’ equation”. The Burgers’ equation has some common

features with the Navier-Stokes equation. Nowadays, the Burgers’ equation, which is a

fundamental nonlinear PDE, has been hired in a large variety of applications in applied

mathematics, physics and engineering such as a simplified fluid dynamics model, model-

ing of transport with accumulation, advection and diffusion terms, gas dynamics, traffic

flow, modeling of shock waves, heat conduction, acoustic waves, statistics of flow prob-

lems, mixing and turbulent diffusion and so on, see [15], [42] and [58] for details. Some

numerical methods have been handled with the Burgers’ equation such as the Adomian

decomposition method [36], homotopy perturbation method [29], variational iteration

method [69] and so on.

The second interesting issue for this dissertation is the time-fractional BBMB which

was modified from the nonlinear PDE called the BBMB equation. Originally, the BBMB

equation was introduced by Benjamin et al. [9] in 1972. It is the mathematical model of

propagation for small-amplitude long waves in nonlinear dispersive media systems which

improved from the Korteweg-de Vries (KdV) equation. Normally, the BBMB and KdV

equations are relevant to the wave breaking models. The KdV model came from water

waves and is used for long waves in many other physical systems. However, in some

physical systems of long waves, the KdV equation was not applicable. Hence, the BBMB

was proposed instead. It described the unidirectional transmission of long-wave signals in

a certain nonlinear dispersive system [30]. For nonlinear FDE, the time-fractional BBMB

equation was presented to discuss the dynamic behavior of physical systems. It has been

3

solved by the homotopy analysis transform method [33], the Crank-Nicolson difference

scheme [57] and the modified residual power series method [73], etc.

The last interesting issue of nonlinear PDEs in the dissertation is a Poisson equation

which can efficiently describe many problems, such as numerical simulation of potential

field, gravitational field, thermal field and electrostatic field, see [67]. In reality, for

solving the nonlinear Poisson equations, it is very rare to find their solutions in closed

forms. Therefore, several effective numerical methods had been developed for solving

nonlinear Poisson-type problems such as finite different method (FDM) by Nagel [48],

finite element method by Hu et al. [25], boundary element method by Kasab et al. [28],

least square method by Arzani and Afshar [3] and so on. In addition, the shape of the

domain is one of the main difficulties for constructing a numerical scheme. Thus, we

consider the Poisson equation in a more general form over several irregular domains.

As mentioned above, we can see that these three nonlinear issues have been solved

by several numerical methods. However, most of these methods have a process of calculat-

ing numerical differentiations. It is well-known that the numerical differentiation is very

sensitive to round-off errors since its manipulation task involves a division by small step-

size. On the other hand, the numerical integration involves a process of multiplication

by small step-size, so it is very insensitive to round-off errors. In addition, the integra-

tion preserves the approximation accuracy and it is a smoothing process compared with

differentiation. Therefore, if we can consider the given problem of PDE in the form of

an integral operator instead of a differential operator, the obtained approximate solution

should provide much better accuracy.

Recently, the finite integration method (FIM) has been first proposed in 2013 by

Wen et al. [63] in order to overcome the boundary value problems for linear PDEs. The

concept of this FIM is to transform the given PDE into an equivalent integral equation

and apply numerical integrations to solve the integral equation afterward. By construct-

ing the linear integral operator which is called “integration matrix” from the numerical

quadrature. Originally, Wen et al. [63] have constructed the integration matrices by using

4

the trapezoidal rule and radial basis functions for solving one-dimensional linear PDEs.

They provided more accurate approximate results of these linear PDEs when compared

with the FDM. After that Li et al. [38] applied this FIM to solve the nonlocal elastic

straight bar under static and dynamic loading conditions. In 2015, Li et al. [37] contin-

ued to extend the FIM for finding approximate solutions of two-dimensional linear PDEs.

Next, the extended FIM in two dimensions has been used to handle the sideways problem

of reconstructing an inaccessible boundary value for parabolic PDEs with variable coeffi-

cients proposed by Yu et al. [68]. Then, Yun et al. [70] have developed the two-dimensional

FIM combined with the technique of least square method to deal with higher-dimensional

singular perturbation problems with multiple boundary layers. In 2016, the FIM has

been improved by constructing the novel integration matrices based on three numerical

quadratures consisting of the Simpson’s rule, Newton-Cotes and Lagrange formula instead

of using the trapezoidal rule. These improved FIMs were presented by Li et al. [39] in

order to find an approximate solution of the linear PDEs which they provided a higher

accuracy than the original FIM for the same number of nodes. Furthermore, we can see

that the above-mentioned FIM has been successfully applied to solve various kinds of

linear PDEs and it was verified by comparing with several existing methods that it offers

a very stable, highly accurate and efficient approach.

In 2018, Boonklurb et al. [14] have been modified the original FIM via Chebyshev

polynomial expansion in order to overcome the one- and two-dimensional linear PDEs

which provided a much higher accurate solution than the FDM and those traditional

FIMs. After that Saengsiritongchai’s thesis used this modified FIM to construct the

numerical algorithms for solving time-dependent linear PDEs and linear space-fractional

order PDEs which obtain the accurate approximate solutions and a part of his work was

just recently published in [13]. In 2019, Gugaew’s thesis applied the modified FIM to find

numerical solutions of direct and inverse problems for linear integro-differential equations

(IDEs) that a part of her work was just also recently published in [12]. In 2020, Juytai

extended the Gugaew’s work by creating the numerical procedures to solve the systems

of linear IDEs both Volterra and Fredholm types and also the system of linear ODEs,

especially, a stiff type. These procedures are based on the idea of modified FIM, but

5

some of them are slightly adjusted by using the shifted Chebyshev polynomials instead.

We can see that the above-mentioned FIMs have been successfully demonstrated the

accurate solutions for many kinds of differential equations, especially, linear differential

equations. However, we notice here that many applications of this efficiently modified

FIM in [14] have not yet been performed to solve the nonlinear differential equations.

Therefore, it becomes our major studies for the research in this dissertation.

In this dissertation, we develop the modified FIM [14] by using the Chebyshev

polynomial expansion over the general domain in order for the method to be applicable

on any given domains which called the “developed FIM-CPE”. It is well known that the

Chebyshev polynomials have an orthogonal property which plays an important role in the

theory of approximation. The roots of Chebyshev polynomial can be found explicitly and

when the equidistant nodes give poor accuracy, the problem can be improved by using the

Chebyshev nodes or zeros of Chebyshev polynomial instead. If the function is sampled

at the Chebyshev nodes, it has the best approximation under the maximum norm, see

[55] for more details. With these advantages, our developed FIM-CPE is constructed by

approximating the solutions in terms of the Chebyshev expansion. We use the zeros of

the Chebyshev polynomial in the general domain of a certain degree to interpolate the

approximate solution. Subsequently, we apply our developed FIM-CPE to devise three

numerical algorithms for finding the approximate solutions of our above-interesting issues

to the following nonlinear PDEs and FDE.

• The one-dimensional Burgers’ equation with a shock wave

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2
, (x, t) ∈ (a, b)× (0, T] (1.1)

subject to the initial condition v(x, 0) = ϕ(x) for x ∈ [a, b] and the Dirichlet

boundary conditions v(a, t) = ψ1(t) and v(b, t) = ψ2(t) for t ∈ (0, T], where

a < b ∈ R, T ∈ R+, ϕ, ψ1 and ψ2 are the given sufficiently continuous functions

and ν > 0 is a constant coefficient of kinematic viscosity.

6

• The one-dimensional time-fractional derivative BBMB equation

Dα
t v −

∂3v

∂x2∂t
+
∂v

∂x
+ v

∂v

∂x
= f(x, t), (x, t) ∈ (0, L)× (0, T] (1.2)

subject to the initial condition v(x, 0) = ϕ(x) for x ∈ [0, L] and the Dirichlet

boundary conditions v(0, t) = ψ1(t) and v(L, t) = ψ2(t) for t ∈ (0, T], where Dα
t

is time-fractional differential operator with order α ∈ (0, 1) in the sense of Caputo

[51], L, T ∈ R+, f , ϕ, ψ1 and ψ2 are given sufficiently continuous functions.

• The two-dimensional Poisson equation over irregular domain

∇2v + α(x, y)
∂v

∂x
+ β(x, y)

∂v

∂y
+ γ(x, y)v = f(x, y, v), (x, y) ∈ Ω (1.3)

subject to the Dirichlet boundary condition v(x, y) = ψ(x, y) for (x, y) ∈ ∂Ω, where

α, β, γ and ψ are the given smooth functions depending on the variables x and y,

respectively and f is a nonlinear in terms of v over the irregular domain Ω ⊆ R2.

Moreover, we see also that the nonlinear problems (1.1) and (1.2) depend on both

space and time variables. Accordingly, their time derivative terms include the first order

and fractional order, respectively. These temporal variables are estimated by the forward

difference quotient. The spatial variable of these problems is handled by our developed

FIM-CPE. Also, we can extend the developed FIM-CPE to deal with two-dimensional

spatial domain in (1.3). Finally, we examine our proposed three numerical algorithms

through several experimental examples by comparing approximate results obtained by

our method and other methods with their analytical solutions. These numerical examples

are implemented via MatLab 2016a software and runs on an Intel(R) Core(TM) i7-6700

CPU @ 3.40 GHz computer system. These examples demonstrate the ability of our

proposed algorithms to produce a significant improvement in terms of accuracy with the

low computational cost.

7

1.2 Research Objectives

The objectives of this research have the following goals. The first goal is to develop

the FIM by using Chebyshev polynomial expansion in order to be applicable directly on

arbitrary domains both in one- and two-dimensional spaces. The next goal is then to

devise three numerical algorithms for solving nonlinear PDEs and FDE including one-

dimensional Burgers’ equation with a shock wave, time-fractional BBMB equation and

two-dimensional nonlinear Poisson equation over irregular domains. Finally, the last goal

is to obtain a much higher degree of accuracy for our proposed algorithms than other

methods with low computational cost under the same parameters and conditions.

1.3 Dissertation Overview

This dissertation is separated into six chapters and it is organized as follows. First,

Chapter I is proposed about an introduction of this work including the motivation and

literature surveys, the research objectives and the thesis overview. Chapter II presents

the developed FIM-CPE by first introducing the background knowledge concerning the

definitions and some important properties of both Chebyshev polynomials and Kronecker

product. We further discuss about Chebyshev expansion that mentions the good choices

of the basis functions and the interpolated nodes in order to obtain the best polynomial

approximation in some senses like maximum norm. After that these facts are applied to

construct the Chebyshev integration matrices both in one- and two-dimensional spaces.

In Chapter III, we have employed the developed FIM-CPE to devise numerical algorithm

for solving the one-dimensional Burgers’ equation with shock wave. We also utilize our

proposed FIM-CPE to create numerical algorithms for finding approximate solutions of

one-dimensional time-fractional BBMB equation and two-dimensional nonlinear Poisson

equation over the irregular domains as demonstrated in Chapters IV and V, respectively.

Besides, comparisons of accuracy and efficiency for each algorithm are displayed in each of

its chapters via examining several experimental examples. Finally, the discussions about

our obtained results and some conclusions are provided in Chapter VI. The possibly future

researches are also suggested.

CHAPTER II

FIM WITH CHEBYSHEV EXPANSION

In this chapter, the background knowledges about definition and some essential

properties of Chebyshev polynomials on the general domain are introduced to be the

main materials for developing the FIM. The developed FIM-CPE can be performed over

arbitrary domain without any further transformation. Moreover, we also discuss about

the Chebyshev expansion which plays an important role in our developed FIM-CPE for

constructing the one- and two-dimensional Chebyshev integration matrices.

2.1 Chebyshev Polynomials

First, let us provide the basic definition of Chebyshev polynomials and their useful

properties. Chebyshev polynomials are the set of orthogonal polynomials which plays a

significant role in the theory of approximation, see [43] for more details. In addition, there

are several kinds of Chebyshev polynomials. However, in this work, we only focus on the

Chebyshev polynomial of the first kind of degree n ≥ 0, which is denoted by Tn(x), as

defined in Definition 2.1. Then, we can express an instance of the first six Chebyshev

polynomials Tn(x) at degree n ∈ {0, 1, 2, 3, 4, 5} for x ∈ [−1, 1] depicted in Figure 2.1.

Figure 2.1: Chebyshev polynomials Tn(x) for n ∈ {0, 1, 2, 3, 4, 5}

9

Definition 2.1. ([43]) The Chebyshev polynomial of degree n ≥ 0 is defined by

Tn(x) = cos(n arccosx), for x ∈ [−1, 1]. (2.1)

However, the Chebyshev polynomial Tn(x) can be defined on the general domain [a, b] by

Rn(x) = Tn

(
2x− a− b

b− a

)
, for x ∈ [a, b]. (2.2)

Henceforth, the Chebyshev polynomial in this dissertation refers to Rn(x) in (2.2).

For the construction of Chebyshev integration matrices in both one and two dimensions,

some elementary properties of Chebyshev polynomial are needed to develop. Thus, their

useful properties of Chebyshev polynomial are provided as follows.

Lemma 2.1. The Chebyshev polynomial Rn(x) satisfies the following properties:

(i) The zeros of Chebyshev polynomial Rn(x) for n ∈ N and x ∈ [a, b] are

xk =
1

2

(
(b− a) cos

(
2k − 1

2n
π

)
+ a+ b

)
, k ∈ {1, 2, 3, . . . , n}. (2.3)

(ii) The single-layer integrations of Chebyshev polynomial Rn(x) for n ≥ 2 are

R̄0(x) =

∫ x

a
R0(ξ)dξ = x− a, (2.4)

R̄1(x) =

∫ x

a
R1(ξ)dξ =

(x− a)(x− b)

b− a
, (2.5)

R̄n(x) =

∫ x

a
Rn(ξ)dξ =

b− a

4

(
Rn+1(x)

n+ 1
− Rn−1(x)

n− 1
− 2(−1)n

n2 − 1

)
. (2.6)

(iii) The discrete orthogonality relationship of Chebyshev polynomials Ri and Rj is

n∑
k=1

Ri(xk)Rj(xk) =


0 if i ̸= j,

n if i = j = 0,

n
2 if i = j ̸= 0,

(2.7)

where xk be the zeros of Rn(x) defined in (2.3) and i, j ∈ {0, 1, 2, . . . , n}.

10

(iv) Let xk be the zeros of Rn defined in (2.3) and define the Chebyshev matrix R by

R =



R0(x1) R1(x1) · · · Rn−1(x1)

R0(x2) R1(x2) · · · Rn−1(x2)

...
...

R0(xn) R1(xn) · · · Rn−1(xn)


.

Then, it has the multiplicative inverse

R−1 =
1

n
diag(1, 2, 2, . . . , 2)R⊤. (2.8)

(v) The recurrence relation of Chebyshev polynomials Rn−1(x), Rn(x) and Rn+1(x) is

Rn+1(x) = 2

(
2x− a− b

b− a

)
Rn(x)−Rn−1(x)

with starting from the values R0(x) = 1 and R1(x) =
2x−a−b
b−a .

Proof. (i) It is clear that if cos
(
n arccos

(
2x−a−b
b−a

))
= 0, then x satisfies (2.3).

(ii) Let x ∈ [a, b], it is easy to obtain the single-layer integrations of R0(x) and R1(x).

For n ≥ 2, we use the integration by substitution. Let cos θ = 2ξ−a−b
b−a , we have

R̄n(x) =

∫ x

a
Rn(ξ)dξ =

b− a

2

∫ 2x−a−b

b−a

−1
Tn(cos θ) d(cos θ)

=
b− a

2

∫ arccos(2x−a−b

b−a
)

arccos(−1)
cos(nθ)(− sin θ dθ)

=
b− a

4

∫ arccos(2x−a−b

b−a
)

arccos(−1)

(
sin(n− 1)θ − sin(n+ 1)θ

)
dθ

=
b− a

4

(
cos(n+ 1)θ

n+ 1
− cos(n− 1)θ

n− 1

)θ=arccos(2x−a−b

b−a
)

θ=arccos(−1)

=
b− a

4

(
Rn+1(ξ)

n+ 1
− Rn−1(ξ)

n− 1

)ξ=x

ξ=a

=
b− a

4

(
Rn+1(x)

n+ 1
− Rn−1(x)

n− 1
− 2(−1)n

n2 − 1

)
.

11

(iii) Recall the trigonometric identity [8],

n∑
k=0

cos(a+ bk) =
sin (n+1)b

2 cos(a+ nb
2)

sin b
2

. (2.9)

Let i, j ∈ {0, 1, 2, . . . , n}, for i ̸= j, by (2.2), (2.3) and (2.9), we have

n∑
k=1

Ri(xk)Rj(xk) =

n∑
k=1

cos
(
2k − 1

2n
iπ

)
cos
(
2k − 1

2n
jπ

)

=
1

2

n−1∑
k=0

(
cos
(
(i+ j)(2k + 1)π

2n

)
+cos

(
(i− j)(2k + 1)π

2n

))

=
1

2

n−1∑
k=0

(
cos
(
i+ j

2n
π+

i+ j

n
πk

)
+cos

(
i− j

2n
π+

i− j

n
πk

))

=
1

2

(
sin
(i+j

2 π
)

cos
(i+j

2 π
)

sin
(i+j

2n π
) +

sin
(i−j

2 π
)

cos
(i−j

2 π
)

sin
(i−j

2n π
))

=
1

4

(
sin(i+ j)π

sin
(i+j

2n π
) +

sin(i− j)π

sin
(i−j

2n π
)) = 0.

Next, for i = j = 0, we have

n∑
k=1

R0(xk)R0(xk) =

n∑
k=1

cos
(
2k − 1

2n
(0)π

)
cos
(
2k − 1

2n
(0)π

)
=

n∑
k=1

1 = n.

Finally, for i = j ̸= 0, we have

n∑
k=1

Ri(xk)Ri(xk) =

n∑
k=1

cos2
(
2k − 1

2n
iπ

)
=

1

2

n∑
k=1

(
1+ cos

(
2k − 1

n
iπ

))
=
n

2
.

(iv) Let Q := 1
ndiag(1, 2, 2, . . . , 2)R⊤. We can prove directly by using (2.7) to compute

the products RQ and QR, we obtain that they are the identity matrices.

(v) From (2.2), let 2x−a−b
b−a = cos θ. Then, Rn(x) = Tn(cos θ) = cos(nθ), θ ∈ [0, π]. So,

Rn+1(x) +Rn−1(x) = cos(n+ 1)θ + cos(n− 1)θ = 2(cos θ) cos(nθ).

Therefore, Rn+1(x) = 2
(
2x−a−b
b−a

)
Rn(x)−Rn−1(x).

12

2.2 Chebyshev Expansion

In this section, we mention about the approximation of a given function f(x) by a

polynomial p(x) that gives a uniform and accurate description in an interval [a, b]. We

start by quoting a remarkable theorem by Weierstrass [19] without proof as follows.

Theorem 2.1. If f(x) is a continuous function in the interval [a, b], then for each ε > 0,

there exists a polynomial p(x) such that |f(x)− p(x)| < ε for all x in the given interval.

Accordingly, by Theorem 2.1, for knowing n+ 1 data points of a function f(x), we

can express the interpolating function f(x) as a linear combination p(x) of polynomial

basis functions of degree less than or equal to n, φ0, φ1, φ2, . . . , φn so that

f(x) ≈ p(x) =

n∑
i=0

ciφi(x).

Here, the coefficients c0, c1, c2, . . . , cn are to be determined by using the known data points

of f(x). Then, we can construct the system of linear equation for solving the unknown

coefficients ci which will be discussed in Section 2.4. Examples of polynomials that are

frequently used to be the basis functions φi(x) for i ∈ {0, 1, 2, . . . , n} are the followings

• Monomials: φi(x) = xi,

• Lagrange polynomials: ℓi(x) =
∏n

j=0,j ̸=i

(x−xj

xi−xj

)
,

• Newton polynomials: πi(x) =
∏i−1

j=0 (x− xj),

• Chebyshev polynomials: Ti(x) = cos (i arccosx).

Furthermore, we plot the first few mentioned-above polynomials as shown in Figure 2.2.

For large degree n, we can observe that the three choices of basis functions: the monomials

xi, the Lagrange polynomials ℓi(x) and Newton polynomials πi(x), are less distinguishable

from one another as depicted in Figures 2.2(a), 2.2(b) and 2.2(c). However, it turns out

that there are better choices for the basis functions, namely, the Chebyshev polynomials.

13

The Chebyshev polynomials play an important role in mathematics because they

have several special properties such as the recursive relation and orthogonality. Their

first six degrees produce the curves that are quite different from one another as shown

in Figure 2.2(d). One of their important properties is the equal oscillation property.

Notice from Figure 2.2(d) that successive extreme points of the Chebyshev polynomials

are equal in magnitude and alternate in sign. This property tends to distribute the

error uniformly when the Chebyshev polynomials are used as the basis functions. In

polynomial interpolation for continuous functions, it is particularly advantageous to select

each interpolation node as the zeros or the extreme points of a Chebyshev polynomial.

This causes the maximum error over the interval of interpolation to be minimized.

In this dissertation, we consequently use the linear combination of Chebyshev poly-

nomial basis functions, which is called the “Chebyshev expansion”, to approximate the

solution of our considered nonlinear differential equations. We also interpolate the ap-

proximate solution at each point by the zeros of Chebyshev polynomial of a certain degree.

The reason for interpolating with the zeros will be detailed later.

(a) Monomials xi (b) Lagrange polynomials ℓi

(c) Newton polynomials πi (d) Chebyshev polynomials Ti

Figure 2.2: Plotting of the first few polynomials on [−1, 1]

14

However, the utility of polynomial interpolation cannot be excessively stretched.

Next, let us quantify the errors that can occur in polynomial interpolation and develop

techniques to minimize such errors. We begin with an interpolation error theorem.

Theorem 2.2. ([22]) If p(x) is the polynomial of degree at most n that interpolates a

function f ∈ Cn+1(a, b) at n + 1 distinct points x0, x1, x2, . . . , xn ∈ [a, b], then for each

x ∈ [a, b], there exists a point ξ ∈ (a, b) such that

f(x)− p(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi). (2.10)

The preceding theorem not only tells us how large the error could be when a given

function is replaced by an interpolating polynomial, but it also gives us a clue that how

we might arrange things to make the error as small as possible. Let us write down again

the expression (2.10) for the error term

E(x) := |f(x)− p(x)| =

∣∣∣∣∣f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi)

∣∣∣∣∣ ,
for some ξ ∈ (a, b). Now, we do not even know what ξ is, except that it is some point in

the interval [a, b] that depends on x. Thus, there is not much we can do with the term

f (n+1)(ξ), particularly in physical applications, because we do not even know what f is.

However, we can try to make the term
∏n

i=0(x − xi) as small as possible by picking a

suitable choice of nodes {xi}.

A special case that often arises is the one in which the interpolated nodes are equally

spaced xi = a + ih, where h = b−a
n . However, this case is the simplest choice of xi that

turns out to be not the best choice. Consider the case where a = −1, b = 1 and n = 4.

Then, we have the nodes xi = −1 + 0.5i for i = 0, 1, 2, 3, 4. Thus, we set

w1(x) :=

n∏
i=0

(x− xi) = (x+ 1)(x+ 0.5)x(x− 0.5)(x− 1)

and plot it as shown in Figure 2.3(a). We found that the polynomial w1(x) has a maximum

15

value on the interval [−1, 1] being around 0.1134. However, if we instead, for some

strange reason, choose the points x0 = −0.9511, x1 = −0.5878, x2 = 0, x3 = 0.5878 and

x4 = 0.9511, then we have

w2(x) := (x+ 0.9511)(x+ 0.5878)x(x− 0.5878)(x− 0.9511)

and plot this w2(x) in Figure 2.3(b). We obtain that the maximum values of the polyno-

mial w2(x) on the interval [−1, 1] is about 0.0624. We can see that the maximum value

of w2(x) is approximately half of the maximum value of w1(x) that obtained from the

equally spaced distribution of the nodes xi. Thus, by choosing a special set of points xi,

it is possible to reduce the contribution of the factor
∏n

i=0(x− xi) to the error term and

also minimize the overall error of the polynomial interpolation.

(a) Polynomial w1(x) (b) Polynomial w2(x)

Figure 2.3: Plotting of the polynomials w1(x) and w2(x) on [−1, 1]

Therefore, the question now becomes: how to choose a good set of nodal points to

sample data, so that a polynomial interpolation is as accurate as possible? This is where

Chebyshev polynomials come into play. It is well known that the Chebyshev polynomial

Tn(x) in (2.1) has the recursive relation, Tn+1(x) = 2xTn(x) − Tn−1(x). Then, we have

the first six Chebyshev polynomials as follows: T0(x) = 1, T1(x) = x, T2(x) = 2x2−1,

T3(x) = 4x3−3x, T4(x) = 8x4−8x2 +1 and T5(x) = 16x5−20x3 +5x. We note here that

the leading coefficient of the Chebyshev polynomial Tn(x) is 2n−1.

Definition 2.2. A polynomial of degree n is called “monic” if the coefficient of xn is 1.

16

Note that expressions of the form
∏n

i=0(x−xi) are monic polynomials as well as the

polynomials obtained from the Chebyshev polynomials divided by 2n−1 which are written

in the form T̂n(x) := 21−nTn(x). Our first application of the Chebyshev polynomials is

to prove a lower bound for maximum norm of a monic polynomial on [−1, 1].

Theorem 2.3. ([22]) If qn is a monic polynomial, then ∥qn∥ = max
x∈[−1,1]

|qn(x)| ≥ 21−n.

Lemma 2.2. ([22]) The maximum norm ∥T̂n∥ on the interval [−1, 1] is 21−n.

From Theorem 2.3 and Lemma 2.2, we have that ∥T̂n∥ ≤ ∥qn∥ which means the monic

Chebyshev polynomial T̂n(x) is the polynomial of degree n that provides the smallest

possible maximum norm for any other monic polynomial qn(x) of degree n.

Lemma 2.3. ([22]) Let xi = cos
(

2i+1
2n+2π

)
for i ∈ {0, 1, 2, . . . , n} is the Chebyshev nodes.

Then, the monic polynomial
∏n

i=0(x− xi) = T̂n+1(x) = 2−nTn+1(x).

Consequently, the scaled Chebyshev polynomial T̂n+1(x) = 2−nTn+1(x) is monic of

degree n + 1 with the smallest maximum absolute value in [−1, 1]. If its zeros are used

to be the interpolated nodes, then we can conclude the error bound as follows.

Theorem 2.4. ([22]) If the nodes xi are chosen as the zeros of Chebyshev polynomial

Tn+1(x), that is xi = cos
(

2i+1
2n+2π

)
for i ∈ {0, 1, 2, . . . , n}, then the error term for the

polynomial interpolation using the nodes xi is bounded by

E(x) = |f(x)−p(x)| ≤ 1

2n(n+ 1)!
max

ξ∈[−1,1]

∣∣∣f (n+1)(ξ)
∣∣∣ .

Moreover, this is the best upper bound, we can achieve by varying the choice of xi.

Note that for an arbitrary interval [a, b], if we use the zeros xi of Chebyshev polynomial

Rn+1(x) as defined in (2.3), then the error bound consuming this zeros xi is

E(x) = |f(x)−p(x)| ≤ 1

2n(n+ 1)!

(
b− a

2

)n+1

max
ξ∈[a,b]

∣∣∣f (n+1)(ξ)
∣∣∣ .

Usually, the hiring of Chebyshev nodes is the best practical possibility for interpolation

and certainly much better than equispaced interpolation.

17

2.3 Kronecker Product

The Kronecker product in mathematics is an operation on two matrices of arbi-

trary size resulting in a block matrix. It should not be confused with the usual matrix

multiplication, which is an entirely different operation. The Kronecker product was first

proposed by Kronecker. Actually, we utilize the definition and some properties of the

Kronecker product from [72] to describe a relation of our Chebyshev integration matrices

in two-dimensional spaces.

Definition 2.3. ([72]) Let A = [aij] ∈ Rm×n and B ∈ Rp×q. Then, A ⊗ B ∈ Rmp×nq is

the Kronecker product defined by a block matrix as follows:

A ⊗ B =


a11B · · · a1nB

...

am1B · · · amnB

 .

Let us provide the fact of Kronecker product without proof as follows.

Theorem 2.5. ([72]) The Kronecker product satisfies the following properties:

(i) Let A ∈ Rm×n and B ∈ Rp×q. Then,

A ⊗ B = (A ⊗ Ip)(In ⊗ B) = (Im ⊗ B)(A ⊗ Iq).

(ii) Let A ∈ Rm×n, B ∈ Rq×r, C ∈ Rn×p and D ∈ Rr×s. Then,

(A ⊗ B)(C ⊗ D) = (AC)⊗ (BD).

(iii) Let A ∈ Rm×m, B ∈ Rn×n and P := [In ⊗ e1, In ⊗ e2, In ⊗ e3, . . . , In ⊗ em] be

an mn ×mn permutation matrix, where In is an n × n identity matrix and ei :=

[0, 0, . . . , 0, 1, 0, . . . , 0]⊤ is an m-dimensional column vector which has 1 in the ith

position and 0’s elsewhere. Then, P(A ⊗ B)P⊤ = B ⊗ A.

18

2.4 Developed FIM-CPE

In this section, we develop the modified FIM proposed by Boonklurb et al. [14]

in order to be applicable on arbitrary domain without any transformation both in one-

and two-dimensional spaces. The main material for this scheme is to construct matrix

representations for the integral operator of Chebyshev polynomial expansion in the general

domain that called “Chebyshev integration matrix”. However, we divide our developed

FIM-CPE into two parts for creating its one- and two-dimensional Chebyshev integration

matrices for solving the problems of nonlinear PDEs as follows.

2.4.1 One-Dimensional Chebyshev Integration Matrices

First, let M ∈ N, a, b ∈ R such that a < b and u(x) be a linear combination of

Chebyshev polynomials R0(x), R1(x), R2(x), . . . , RM−1(x), that is

u(x) =

M−1∑
n=0

cnRn(x), for x ∈ [a, b], (2.11)

where each cn is an unknown coefficient. Let x1 < x2 < x3 < · · · < xM be nodal points

that are generated by the zeros of Chebyshev polynomial RM (x) as defined in (2.3). After

substituting them into (2.11), we have

u(xk) =

M−1∑
n=0

cnRn(xk)

for k ∈ {1, 2, 3, . . . ,M}. We can express them into the matrix form



u(x1)

u(x2)

...

u(xM)


=



R0(x1) R1(x1) · · · RM−1(x1)

R0(x2) R1(x2) · · · RM−1(x2)

...
...

R0(xM) R1(xM) · · · RM−1(xM)





c0

c1
...

cM−1


which we denote it by u = Rc. We notice here that R is invertible by Lemma 2.1 (iv)

and it has the closed form (2.8). Thus, the unknown coefficient vector c = R−1u.

19

Next, we present the construction of one-dimensional Chebyshev integration matrix.

Initially, let us consider the single-layer integration of u(x) from a to xk for xk ∈ [a, b],

denoted by U (1)(xk), as the following.

U (1)(xk) :=

∫ xk

a
u(ξ) dξ =

M−1∑
n=0

cn

∫ xk

a
Rn(ξ) dξ =

M−1∑
n=0

cnR̄n(xk),

where each R̄n is the integration of Chebyshev polynomial Rn defined in (2.4), (2.5) and

(2.6). When each zero xk for k ∈ {1, 2, 3, . . . ,M} is varied to the above equation, it can

be written in the matrix form



U (1)(x1)

U (1)(x2)

...

U (1)(xM)


=



R̄0(x1) R̄1(x1) · · · R̄M−1(x1)

R̄0(x2) R̄1(x2) · · · R̄M−1(x2)

...
...

R̄0(xM) R̄1(xM) · · · R̄M−1(xM)





c0

c1
...

cM−1


which we denote it by U(1) = Rc = RR−1u := Au, where A = RR−1 = [aki]M×M

is called the “Chebyshev integration matrix” in one-dimensional space for our developed

FIM-CPE. However, it can be expressed in another form as

U (1)(xk) =

∫ xk

a
u(ξ) dξ =

M∑
i=1

akiu(xi)

for varying each zero xk, k ∈ {1, 2, 3, . . . ,M} to the above equation, the matrix form can

be written as the following.



U (1)(x1)

U (1)(x2)

...

U (1)(xM)


=



a11 a12 · · · a1M

a21 a22 · · · a2M
...

...

aM1 aM2 · · · aMM





u(x1)

u(x2)

...

u(xM)


.

Therefore, we can extend the idea for constructing the Chebyshev integration matrix of

the single-layer integration to the higher-layer integrations.

20

Now, let us consider the double-layer integration of u(x) from a to the zero xk,

which is denoted by U (2)(xk). Then, we obtain

U (2)(xk) :=

∫ xk

a

∫ ξ2

a
u(ξ1) dξ1dξ2

=

∫ xk

a
U (1)(ξ2) dξ2

=

M∑
i=1

aki U
(1)(xi)

=

M∑
l=1

M∑
i=1

akiail u(xl)

=

M∑
l=1

[
A2
]
kl
u(xl).

When we vary the zeros xk for k ∈ {1, 2, 3, . . . ,M} in the above equation, each equa-

tion can be combined and written in the matrix form U(2) = A2u which is the matrix

representation for double- layer integration of u(x) in our developed FIM-CPE.

Similarly, by using the mathematical induction, we have the m multiple-layer inte-

gration of u(x) from a to the zero xk, denoted by U (m)(xk), as follows

U (m)(xk) :=

∫ xk

a

∫ ξm

a
. . .

∫ ξ3

a

∫ ξ2

a
u(ξ1) dξ1dξ2 . . . ξm−1ξm

=

∫ xk

a
U (m−1)(ξm) dξm

=

M∑
i=1

aki U
(m−1)(xi)

=

M∑
l=1

M∑
i=1

aki
[
Am−1

]
il
u(xl)

=

M∑
l=1

[Am]kl u(xl).

When the zeros xk for k ∈ {1, 2, 3, . . . ,M} are distributed in the above equation, each

equation can be combined and expressed in the matrix form U(m) = Amu which is the

matrix representation for m multiple-layer integration of u(x) in the developed FIM-CPE.

21

2.4.2 Two-Dimensional Chebyshev Integration Matrices

Next, we present the constructing two-dimensional Chebyshev integration matrices

with respect to both variables x and y. Let M,N ∈ N and a, b, c, d ∈ R such that a < b

and c < d. Let xk, k ∈ {1, 2, 3, . . . ,M} and yh, h ∈ {1, 2, 3, . . . , N} be computational

grid points over the domain Ω = [a, b] × [c, d] along with the horizontal and vertical

directions that are discretized by the zeros of the Chebyshev polynomials RM (x) and

RN (y) defined in (2.3), respectively. Therefore, we have the total number of grid points

in the system to be MN nodes.

For calculating convenience, we label the indices in numbering system of the grid

points along the x-direction as Figure 2.4(a) and the y-direction as Figure 2.4(b) which

are consecutively called the global and local numbering systems.

t t t t t
1 2 3 · · · M

t t t t t
M+1 M+2 M+3 · · · 2M

t t t t t
2M+1 2M+2 2M+3 · · · 3M

t t t t t...
...

t t t t t
(N–1)M+1 (N–1)M+2 (N–1)M+3 · · · MN

(a) Global numbering system

t t t t t
1 N+1 2N+1 · · · (M–1)N+1

t t t t t
2 N+2 2N+2 · · · (M–1)N+2

t t t t t
3 N+3 2N+3 · · · (M–1)N+3

t t t t t...
...

t t t t t
N 2N 3N · · · MN

(b) Local numbering system

Figure 2.4: The indices of the grid points globally and locally

First, let us consider the single-layer integrations of u(x, y) with respect to the

variables x and y that are denoted by U (1)
x and U (1)

y , respectively. For U (1)
x (xk, y) in the

global numbering system, when y is fixed, we can see that its integral depends on only

one variable x. Thus, we can utilize the idea in one dimension to construct the Chebyshev

integration matrix with respect to x in two dimensions as

U (1)
x (xk, y) :=

∫ xk

a
u(ξ, y) dξ =

M∑
i=1

akiu(xi, y), (2.12)

22

for k ∈ {1, 2, 3, . . . ,M}, it can be expressed in the matrix form as U(1)
x (·, y) = AMu(·, y),

where AM = RR−1 is an M ×M matrix. Thus, for each y ∈ {y1, y2, y3, . . . , yN},



U(1)
x (·, y1)

U(1)
x (·, y2)

...

U(1)
x (·, yN)


=



AM 0 · · · 0

0 AM
.

... 0

0 · · · 0 AM


︸ ︷︷ ︸

N blocks



u(·, y1)

u(·, y2)
...

u(·, yN)


,

which is represented in the matrix form by U(1)
x = Axu, where Ax = IN ⊗ AM is

called the “two-dimensional Chebyshev integration matrix with respect to x” and ⊗ is

the Kronecker product described in Section 2.3. Similarly, for U (1)
y (x, yh), when x is fixed,

it can be expressed in the local numbering system as

U (1)
y (x, yh) :=

∫ yh

c
u(x, η) dη =

N∑
j=1

ahju(x, yj), (2.13)

for h ∈ {1, 2, 3, . . . , N}, it can be written as Ũ(1)
y (x, ·) = ANu(x, ·), where AN = RR−1

is an N ×N matrix. Hence, for each x ∈ {x1, x2, x3, . . . , xM},



U(1)
y (x1, ·)

U(1)
y (x2, ·)

...

U(1)
y (xM , ·)


=



AN 0 · · · 0

0 AN
.

... 0

0 · · · 0 AN


︸ ︷︷ ︸

M blocks



u(x1, ·)

u(x2, ·)
...

u(xM , ·)


,

which imposed by Ũ(1)
y = Ãyũ, where Ãy = IM ⊗ AN . We notice that the elements of

u and ũ are the same, but the positions are different in the numbering system. Thus, we

can transform Ũ(1)
y and ũ in local to global numbering system by using the permutation

matrix P = [pij]MN×MN , where each pij is defined by

pij =

 1 ; i = (h− 1)M + k and j = (k − 1)N + h,

0 ; otherwise,

23

for all k ∈ {1, 2, 3, . . . ,M} and h ∈ {1, 2, 3, . . . , N}. Note that this permutation matrix P

is equivalent to the permutation matrix P in Theorem 2.5 (iii). It plays an important role

to transform the ith point in local numbering system to the jth point in global numbering

system. Moreover, it is not only trivial that P is nonsingular matrix, but it also has the

multiplicative inverse P−1 = P⊤. For instance, if M = 4 and N = 3, then

P =



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1



.

Therefore, we obtain that U(1)
y = PŨ(1)

y and u = Pũ. Also, we can reformulate them to

attain that U(1)
y = Ayu, where Ay = PÃyP−1 = P(IM ⊗ AN)P⊤ = AN ⊗ IM is called

the “two-dimensional Chebyshev integration matrix with respect to y” of our developed

FIM-CPE in the global numbering system.

Next, let us consider the double-layer integration along both x- and y-directions,

which consist of the integrations with respect to the variables x and x, y and y, x and y,

and y and x, denoted by U (2)
x , U (2)

y , U (2)
xy and U

(2)
xy , respectively. They can be expressed

in the global numbering system as follows.

For the double-layer integration with respect to the variables x and x or U (2)
x (xk, y)

when y is fixed to be a constant and use (2.12), we can perform the process similar to the

one in one dimension to obtain that

U (2)
x (xk, y) =

∫ xk

a

∫ ξ2

a
u(ξ1, y) dξ1dξ2 =

M∑
l=1

M∑
i=1

akiailu(xl, y) =

M∑
l=1

[
A2

M

]
kl
u(xl, y)

24

for k ∈ {1, 2, 3, . . . ,M}, it can be written in the matrix form U(2)
x (·, y) = A2

Mu(·, y).

Therefore, after substituting each the zero y ∈ {y1, y2, y3, . . . , yN}, we have



U(2)
x (·, y1)

U(2)
x (·, y2)

...

U(2)
x (·, yN)


=



A2
M 0 · · · 0

0 A2
M

.
... 0

0 · · · 0 A2
M


︸ ︷︷ ︸

N blocks



u(·, y1)

u(·, y2)
...

u(·, yN)


,

which can be written in the matrix form U(2)
x = A2

xu, where A2
x = IN ⊗ A2

M .

For the double-layer integration with respect to the variables y and y or U (2)
y (x, yh)

when x is fixed to be a constant and use (2.13), then we can operate it similar to the

process in one dimension along with the local numbering system as

U (2)
y (x, yh) =

∫ yh

c

∫ η2

c
u(x, η1) dη1dη2 =

N∑
l=1

N∑
j=1

ahjajlu(x, yl) =

M∑
l=1

[
A2

N

]
hl
u(x, yl)

for h ∈ {1, 2, 3, . . . , N}, it can be expressed in the matrix form U(2)
y (x, ·) = A2

Nu(x, ·).

Therefore, after substituting each the zero x ∈ {x1, x2, x3, . . . , xM}, we obtain



U(2)
y (x1, ·)

U(2)
y (x2, ·)

...

U(2)
y (xM , ·)


=



A2
N 0 · · · 0

0 A2
N

.
... 0

0 · · · 0 A2
N


︸ ︷︷ ︸

M blocks



u(x1, ·)

u(x2, ·)
...

u(xM , ·)


,

which can be written in the matrix form Ũ(2)
y = Ã2

yũ, where Ã2
y = IM ⊗ A2

N . However,

we notice here that the index arrangement of nodes in this matrix equation is labeled

along with the local numbering system. Hence, we can transform these nodes globally

by consuming the mentioned-above permutation matrix P. Accordingly, we obtain the

matrix representation of double-layer integration concerning the variable y only in the

global numbering system as U(2)
y = A2

yu, where A2
y = PÃ2

yP⊤ = A2
N ⊗ IM .

25

Remark 2.1. Similarly, we can create the matrix representation for m multiple-layer

integration by utilizing the same idea as in constructing U(2)
x and U(2)

y . Then, for the

higher-order Chebyshev integration matrices with respect to the variables x only and y

only in the global numbering system which can be respectively expressed in the matrix

forms, for m ∈ N, as follow:

U(m)
x = Am

x u, where Am
x = IN ⊗ Am

M ,

U(m)
y = Am

y u, where Am
y = Am

N ⊗ IM .

For the double-layer integration with respect to the variables x and y or U (2)
xy (xk, yh).

By using (2.12) and (2.13), we have

U (2)
xy (xk, yh) =

∫ yh

c

∫ xk

a
u(ξ, η) dξdη =

N∑
j=1

M∑
i=1

ahjakiu(xi, yj) (2.14)

for k ∈ {1, 2, 3, . . . ,M} and h ∈ {1, 2, 3, . . . , N}, it can be separated into two types as:

Type I : If yh is fixed, but xk is varied, then (2.14) can be written in the matrix form

U(2)
xy (·, yh) =

N∑
j=1

ahjAMu(·, yj)

=



ah1AM 0 · · · 0

0 ah2AM
.

... 0

0 · · · 0 ahNAM





u(·, y1)

u(·, y2)
...

u(·, yN)



=



ah1IM

ah2IM
...

ahNIM



⊤ 

AM 0 · · · 0

0 AM
.

... 0

0 · · · 0 AM


︸ ︷︷ ︸

N blocks



u(·, y1)

u(·, y2)
...

u(·, yN)


,

where ahj is an element at hth row and jth column of Chebyshev integration matrix AN .

26

By varying all yh ∈ {y1, y2, y3, . . . , yN} in the above equation, we obtain the block matrix



U(2)
xy (·, y1)

U(2)
xy (·, y2)

...

U(2)
xy (·, yN)


=



a11IM a12IM · · · a1NIM

a21IM a22IM · · · a2NIM
...

...

aN1IM aN2IM · · · aNNIM





AM 0 · · · 0

0 AM
.

... 0

0 · · · 0 AM


︸ ︷︷ ︸

N blocks



u(·, y1)

u(·, y2)
...

u(·, yN)


,

which we denote it by U(2)
xy = (AN ⊗ IM)(IN ⊗ AM)u = AyAxu from Remark 2.1.

Type II : If xk is fixed, but yh is varied, then (2.14) can be written in the matrix form

U(2)
xy (xk, ·) =

M∑
i=1

akiANu(xi, ·)

=



ak1AN 0 · · · 0

0 ak2AN
.

... 0

0 · · · 0 akMAN





u(x1, ·)

u(x2, ·)
...

u(xM , ·)



=



ak1IN

ak2IN
...

akMIN



⊤ 

AN 0 · · · 0

0 AN
.

... 0

0 · · · 0 AN


︸ ︷︷ ︸

M blocks



u(x1, ·)

u(x2, ·)
...

u(xM , ·)


,

where aki is an element at kth row and ith column of Chebyshev integration matrix AM .

By varying all xk ∈ {x1, x2, x3, . . . , xM} in the above equation, we get the block matrix



U(2)
xy (x1, ·)

U(2)
xy (x2, ·)

...

U(2)
xy (xM , ·)


=



a11IN a12IN · · · a1MIN

a21IN a22IN · · · a2MIN
...

...

aM1IN aM2IN · · · aMMIN





AN 0 · · · 0

0 AN
.

... 0

0 · · · 0 AN


︸ ︷︷ ︸

M blocks



u(x1, ·)

u(x2, ·)
...

u(xM , ·)


,

27

which we denote it by Ũ(2)
xy = (AM ⊗ IN)(IM ⊗ AN)ũ = ÃxÃyũ which is in the local

numbering system. Nevertheless, we can transform it globally by hiring the mentioned-

above permutation matrix P. Then, we obtain

U(2)
xy = PŨ(2)

xy = P
(
ÃxÃyũ

)
= P

(
P−1AxP

) (
P−1AyP

) (
P−1u

)
= AxAyu,

where Ax and Ay are defined in Remark 2.1. Also, we observe that they are commutative.

In fact, AyAx = (AN ⊗ IM)(IN ⊗ AM) = AN ⊗ AM = (IN ⊗ AM)(AN ⊗ IM) = AxAy

by Theorem 2.5. Hence, we obtain the matrix representation U(2)
xy = AyAxu = AxAyu.

For the double-layer integration with respect to the variables y and x or U (2)
yx (x, y).

By using (2.12) and (2.13), we have

U (2)
yx (xk, yh) =

∫ xk

a

∫ yh

c
u(ξ, η) dηdξ =

M∑
i=1

N∑
j=1

akiahju(xi, yj) = U (2)
xy (xk, yh)

for all xk ∈ {x1, x2, x3, . . . , xM} and yh ∈ {y1, y2, y3, . . . , yN}, which we can see that the

double-layer integrations concerning x and y with y and x are equal in the global system.

Thereby, the above equation can be written as U(2)
yx = U(2)

xy = AyAxu = AxAyu.

Remark 2.2. The double-layer integration can be easily extended to the multiple-layer

integrations, that are the mth-order Chebyshev integration matrix with respect to x and

the nth-order Chebyshev integration matrix with respect to y in the global numbering

system, which can be represented in the matrix forms

U(m,n)
xy = Am

x An
yu, where Am

x An
y = An

N ⊗ Am
M ,

U(n,m)
yx = An

yAm
x u, where An

yAm
x = An

N ⊗ Am
M .

Here, Ax and Ay are the first-order Chebyshev integration matrices with respect to the

variables x and y defined in Remark 2.1, respectively.

CHAPTER III

BURGERS’ EQUATION WITH SHOCK WAVE

In this section, we first provide the briefly physical meaning of Burgers’ equation.

Then, we apply the developed FIM-CPE to devise a numerical algorithm for finding

approximate solutions of the Burgers’ equation with shock wave (1.1). After that, several

experimental examples are implemented in order to show the accuracy of our algorithm

is better than many existing methods through various measurements.

3.1 Burgers’ Equation

The Burgers’ equation is a simple equation to understand the main properties of the

Navier-Stokes equation [24]. In this one-dimensional equation the pressure is neglected,

but the effects of the nonlinear and viscous terms remain. Then, it is written as

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
,

which is usually known as Burgers’ equation. This Burgers’ equation is balance between

time evolution, nonlinearity and diffusion. This is the simplest model of nonlinear equa-

tion for diffusive waves in fluid dynamics. In 1948, Burgers [15] first developed this

equation primarily to throw light on turbulence described by the interaction of two op-

posite effects of convection and diffusion. Thenceforth, the Burgers’ equation is popular

until now to study a thorough behavior of the phenomenon of turbulence. The meaning of

each term in this equation is given as follows. The variable u is a velocity of the traveling

wave. The term ut is the acceleration of the traveling wave. The nonlinear convection

term uux will have a shocking up effect that causes waves to break. The viscous term νuxx

is a diffusion term like the one occurring in the heat equation. Other details regarding the

Burgers’ equation can be found in [11] and the references therein. However, we attempt

to find a traveling wave solution u by the developed FIM-CPE in the next section.

29

3.2 Algorithm for Solving Burgers’ Equation

Now, we apply our developed FIM-CPE in one-dimensional space to construct the

numerical algorithm for solving the one-dimensional nonlinear Burgers’ equation with a

shock wave of (1.1) in order to achieve a high accurate approximate result. Let u be an

approximate solution of v in (1.1). Then, we have the following one-dimensional nonlinear

Burgers’ equation with shock wave as

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (x, t) ∈ (a, b)× (0, T], (3.1)

subject to the initial condition:

u(x, 0) = ϕ(x), x ∈ [a, b], (3.2)

and the Dirichlet boundary conditions:

u(a, t) = ψ1(t), t ∈ (0, 1],

u(b, t) = ψ2(t), t ∈ (0, 1].
(3.3)

where a < b ∈ R, T ∈ R+, ϕ, ψ1 and ψ2 are the given sufficiently continuous functions,

ν > 0 is a constant coefficient of kinematic viscosity, and u is an unknown function of the

space x and time t, respectively, to be determined. Assume that u is a smooth real-valued

function of the temporal coordinate. Then, we obtain that the functions u(x, t) at any

two-consecutive times provide the values closely. In other words, let the two-consecutive

times 0 ≤ tm−1 < tm for m ∈ N. If |tm−1 − tm| → 0, then |u(x, tm−1)− u(x, tm)| → 0.

Hence, this assumption is sufficient to employ the linearization under the time variable.

Let us first uniformly discretizes the temporal domain (0, T] by specifying each time

point tm = m∆t for m ∈ N into (3.1). Afterward, we linearize the nonlinear term in (3.1).

In fact, it can be linearized to many types. In this work, it is linearized by

∂u⟨m⟩(x)

∂t
+ u⟨m−1⟩(x)

∂u⟨m⟩(x)

∂x
= ν

∂2u⟨m⟩(x)

∂x2
,

30

where u⟨m⟩(x) = u(x, tm) is the numerical value at mth time iteration. Subsequently, we

approximate the time derivative term in the above equation. Usually, an estimation of the

derivative term with respect to time has several methods such as forward, backward and

central difference schemes. The use of each method affects the convergence speed. The

method chosen in this study is the first-order forward difference quotient which actually

provides the time complexity O(∆t). Thus, we have

u⟨m⟩(x)− u⟨m−1⟩(x)

∆t
+ u⟨m−1⟩(x)

∂u⟨m⟩(x)

∂x
= ν

∂2u⟨m⟩(x)

∂x2
. (3.4)

Applying our developed FIM to eliminate all spatial derivatives from (3.4) by taking the

double-layer integral from a to xk ∈ (a, b), that each xk is generated by the zeros of

Chebyshev polynomial RM (x) as defined in (2.3), on both sides of (3.4). After that, we

obtain the equivalent integral equation as follows,

∫ xk

a

∫ ξ2

a

(
u⟨m⟩(ξ1)− u⟨m−1⟩(ξ1)

∆t

)
dξ1dξ2

+

∫ xk

a

∫ ξ2

a

(
u⟨m−1⟩(ξ1)

∂u⟨m⟩(ξ1)

∂ξ1

)
dξ1dξ2 = νu⟨m⟩(xk) + d1xk + d2, (3.5)

where d1 and d2 are arbitrary constants emerged from the process of integration.

Then, let us consider the integral of nonlinear term in (3.5) by letting it be q(xk).

Using the linear combination (2.11) and the technique of integration by parts, we have

q(xk) :=

∫ xk

a

∫ ξ2

a

(
u⟨m−1⟩(ξ1)

∂u⟨m⟩(ξ1)

∂ξ1

)
dξ1dξ2

=

∫ xk

a
u⟨m−1⟩(ξ2)u

⟨m⟩(ξ2) dξ2 −
∫ xk

a

∫ ξ2

a

∂u⟨m−1⟩(ξ1)

∂ξ1
u⟨m⟩(ξ1) dξ1dξ2

=

∫ xk

a
u⟨m−1⟩(ξ2)u

⟨m⟩(ξ2) dξ2 −
∫ xk

a

∫ ξ2

a

M−1∑
n=0

c⟨m−1⟩
n R′

n(ξ1)u
⟨m⟩(ξ1) dξ1dξ2

=

∫ xk

a
u⟨m−1⟩(ξ2)u

⟨m⟩(ξ2) dξ2 −
∫ xk

a

∫ ξ2

a
R′(ξ1)c⟨m−1⟩u⟨m⟩(ξ1) dξ1dξ2

=

∫ xk

a
u⟨m−1⟩(ξ2)u

⟨m⟩(ξ2) dξ2 −
∫ xk

a

∫ ξ2

a
R′(ξ1)R−1u⟨m−1⟩u⟨m⟩(ξ1) dξ1dξ2,

where R′(·) =
[
R′

0(·), R′
1(·), R′

2(·), . . . , R′
M−1(·)

]
is the row vector of first-order derivative

31

vector of Chebyshev polynomial and R−1 is defined by (2.8). Hence, by varying the zeros

xk ∈ {x1, x2, x3, . . . , xM}, the above equation can be written in the matrix form:



q(x1)

q(x2)

...

q(xM)


= A



u⟨m−1⟩(x1)u
⟨m⟩(x1)

u⟨m−1⟩(x2)u
⟨m⟩(x1)

...

u⟨m−1⟩(xM)u⟨m⟩(xM)


− A2



R′(x1)R−1u⟨m−1⟩u⟨m⟩(x1)

R′(x2)R−1u⟨m−1⟩u⟨m⟩(x2)

...

R′(xM)R−1u⟨m−1⟩u⟨m⟩(xM)


.

For computational convenience, we reduce the above matrix into the simplified form:

q = Adiag
(

u⟨m−1⟩
)

u⟨m⟩ − A2diag
(

R′R−1u⟨m−1⟩
)

u⟨m⟩ := Q⟨m−1⟩u⟨m⟩, (3.6)

where Q⟨m−1⟩ = Adiag(u⟨m−1⟩)−A2diag(R′R−1u⟨m−1⟩), q = [q(x1), q(x2), . . . , q(xM)]⊤,

u⟨z⟩ =
[
u⟨z⟩(x1), u

⟨z⟩(x2), . . . , u
⟨z⟩(xM)

]⊤ for z ∈ N ∪ {0}, A = RR−1 is the M ×M

one-dimensional Chebyshev integration matrix explained in Section 2.4.1 and

R′ =



R′(x1)

R′(x2)

...

R′(xM)


=



R′
0(x1) R′

1(x1) · · · R′
M−1(x1)

R′
0(x2) R′

1(x2) · · · R′
M−1(x2)

...
...

R′
0(xM) R′

1(xM) · · · R′
M−1(xM)


. (3.7)

Consequently, by substituting each zero xk ∈ {x1, x2, x3, . . . , xM} into the integral equa-

tion (3.5), we can convert them, that are substituted by each zero xk, to the matrix form

by employing (3.6) and our developed FIM-CPE as follows:

1

∆t

(
A2u⟨m⟩ − A2u⟨m−1⟩

)
+ Q⟨m−1⟩u⟨m⟩ = νu⟨m⟩ + d1x + d2i,

or it can be simplified as

(
1

∆t
A2 + Q⟨m−1⟩ − νI

)
u⟨m⟩ − d1x − d2i =

1

∆t
A2u⟨m−1⟩, (3.8)

where I is an M ×M identity matrix, x = [x1, x2, x3, . . . , xM]⊤ and i = [1, 1, 1, . . . , 1]⊤.

32

From the given Dirichlet boundary conditions (3.3), we can change them into the

vector forms by using the linear combination of Chebyshev polynomials (2.11) at mth

time iteration as follow:

u⟨m⟩(a) =

M−1∑
n=0

c⟨m⟩
n Rn(a) =

M−1∑
n=0

c⟨m⟩
n (−1)n := hlc⟨m⟩ = hlR−1u⟨m⟩ = ψ1(tm), (3.9)

u⟨m⟩(b) =

M−1∑
n=0

c⟨m⟩
n Rn(b) =

M−1∑
n=0

c⟨m⟩
n (+1)n := hrc⟨m⟩ = hrR−1u⟨m⟩ = ψ2(tm), (3.10)

where tm = m∆t for m ∈ N, hl = [1,−1, 1, . . . , (−1)M−1] and hr = [1, 1, 1, . . . , 1]. Note

that, for other types of boundary conditions, they can be similarly transformed the above

Dirichlet boundary conditions into vector forms by using the Chebyshev expansion (2.11)

together with derivative of Chebyshev polynomials.

Finally, from (3.8), (3.9) and (3.10), we can construct the following system of iter-

ative linear equations for a total of M + 2 unknowns containing u⟨m⟩, d1 and d2 as


1
∆tA2 + Q⟨m−1⟩ − νI −x −i

hlR−1 0 0

hrR−1 0 0




u⟨m⟩

d1

d2

 =


1
∆tA2u⟨m−1⟩

ψ1(tm)

ψ2(tm)

 . (3.11)

Accordingly, the solution u⟨m⟩ can be approximated by solving the system (3.11) with

starting from the given initial condition (3.2), i.e., u⟨0⟩ = [ϕ(x1), ϕ(x2), ϕ(x3), . . . , ϕ(xM)]⊤.

Note that when we would like to calculate a numerical solution u at any x ∈ [a, b] for the

terminal time T , we can find it by utilizing (2.11) as the following formula:

u(x, T) =

M−1∑
n=0

c⟨m⟩
n Rn(x) = R(x)c⟨m⟩ = R(x)R−1u⟨m⟩,

where R(x) = [R0(x), R1(x), R2(x), . . . , RM−1(x)] and u⟨m⟩ is the final iteration of (3.11).

For computational convenience, we summarize all above-mentioned procedures to

the following algorithm in form of pseudocode in order to find an approximate solution

of the one-dimensional Burgers’ equation by using our developed FIM-CPE.

33

Algorithm 1 Algorithm for solving Burgers’ equation by the developed FIM-CPE

Input: a, b, x, ν, T , M , ∆t, ϕ(x), ψ1(t) and ψ2(t);

Output: An approximate solution u(x, T);

1: Set xk = 1
2

[
(b− a) cos

(
2k−1
2M π

)
+ a+ b

]
for k ∈ {1, 2, 3, . . . ,M} in descending order;

2: Compute x, i, hl, hr, I, R′, R, R−1, R(x) and A;

3: Construct u⟨0⟩ = [ϕ(x1), ϕ(x2), ϕ(x3), . . . , ϕ(xM)]⊤;

4: Set m = 1 and t1 = ∆t;

5: while tm ≤ T do

6: Compute Q⟨m−1⟩ = Adiag(u⟨m−1⟩)− A2diag(R′R−1u⟨m−1⟩);

7: Find u⟨m⟩ by solving the iterative linear system (3.11);

8: Update m = m+ 1;

9: Compute tm = m∆t;

10: end while

11: return u(x, T) = R(x)R−1u⟨m⟩;

3.3 Numerical Examples for Testing Algorithm 1

In this section, we apply the proposed Algorithm 1 based on the one-dimensional

developed FIM-CPE for finding the approximate solutions of one-dimensional nonlinear

Burgers’ equations with a shock wave in order to illustrate the efficiency and accuracy. In

the following Examples 3.1 and 3.2, the analytical solutions were obtained by using the

Hopf-Cole transformation that Benton and Platzman [10] have surveyed. Their analytical

solutions involve an infinite series, which may converge very slowly for the small viscosity

ν. Then, Miller [45] has shown that these problems produce oscillations and instabilities

for ν < 0.01. We can see from our results that the proposed Algorithm 1 can reduce

the effect of these problems, especially for small ν. The presented method also can be

performed on Examples 3.3 and 3.4 that contain shock waves in their exact solutions.

The accuracy of the obtained numerical solutions is measured in terms of the absolute

error and also the error norms L∞ and L2.

34

Example 3.1. Consider the Burgers’ equation (3.1) with initial and boundary conditions

u(x, 0) = sin(πx), x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t > 0.

The analytical solution given by Cole [16] of this equation is

u∗(x, t) =
2πν

∑∞
n=1 an exp

(
−n2π2νt

)
n sin (nπx)

a0 +
∑∞

n=1 an exp (−n2π2νt) cos (nπx) , (3.12)

where the Fourier coefficients a0 and an are

a0 =

∫ 1

0
exp

(
cos (πx)− 1

2πν

)
dx,

an = 2

∫ 1

0
exp

(
cos (πx)− 1

2πν

)
cos (nπx) dx, n ∈ {1, 2, 3, . . . }.

To find the numerical solutions u(x, T) of Example 3.1 achieved by the proposed

Algorithm 1, we can express the mean absolute error (MAE) at different discretizing

values of grid numbers M and time steps ∆t as displayed in Table 3.1 for the terminal

time T = 1 and the kinematic viscosity ν = 0.01. It is demonstrated that the large

M and the small ∆t affect the MAE to be vanished. Moreover, we choose parameters

∆t = 10−4, M = 80 and ν = 0.01. Then, our obtained results are compared with

the numerical results obtained from FEM [34], FDM [16], original FIM [40] and their

analytical solutions as shown in Table 3.2, which are measured by the absolute error. We

can see that our numerical Algorithm 1 provides the accuracy more than those methods.

Table 3.1: MAE at different M and ∆t of Example 3.1

M ∆t = 10−1 ∆t = 10−2 ∆t = 10−3 ∆t = 10−4 ∆t = 10−5

10 4.1790× 10−2 7.1218× 10−2 1.1252× 10−2 1.2144× 10−2 1.2244× 10−2

20 5.8231× 10−3 2.5693× 10−3 2.4579× 10−3 2.4456× 10−3 2.4443× 10−3

30 5.0198× 10−3 4.0507× 10−4 1.0844× 10−4 1.0775× 10−4 1.0816× 10−4

40 4.9865× 10−3 3.8551× 10−4 3.9793× 10−5 5.8829× 10−6 4.7329× 10−6

50 4.9864× 10−3 3.8724× 10−4 3.8842× 10−5 3.9406× 10−6 4.6543× 10−7

35

Table 3.2: Comparison of absolute errors of Example 3.1

x T FEM [34] FDM [16] FIM [40] Algorithm 1

0.25 0.4 6.28× 10−3 5.30× 10−4 8.00× 10−5 1.1647× 10−6

0.6 6.40× 10−3 9.00× 10−5 5.00× 10−5 5.2590× 10−7

0.8 6.04× 10−3 3.00× 10−5 3.00× 10−5 2.8243× 10−7

1.0 5.56× 10−3 6.00× 10−5 2.00× 10−5 1.7484× 10−7

3.0 2.43× 10−3 2.00× 10−5 1.00× 10−5 2.5503× 10−8

0.50 0.4 4.72× 10−3 1.08× 10−2 1.70× 10−4 1.4588× 10−5

0.6 5.83× 10−3 4.64× 10−3 1.10× 10−4 6.4394× 10−6

0.8 6.12× 10−3 2.29× 10−3 8.00× 10−5 3.2064× 10−6

1.0 6.05× 10−3 1.26× 10−3 5.00× 10−5 1.7819× 10−6

3.0 3.44× 10−3 2.00× 10−3 1.00× 10−5 9.2911× 10−8

0.75 0.4 1.75× 10−3 3.65× 10−2 2.80× 10−4 7.2687× 10−5

0.6 4.08× 10−3 1.75× 10−2 1.90× 10−4 3.0208× 10−5

0.8 5.14× 10−3 9.19× 10−3 1.30× 10−4 1.3926× 10−5

1.0 5.52× 10−3 5.30× 10−3 9.00× 10−5 7.2688× 10−6

3.0 3.92× 10−3 2.10× 10−3 2.00× 10−5 1.8491× 10−7

Then, the graphical solutions are depicted in Figure 3.1 including the propagation

of travelling wave at different times T in two-dimensional graph and also at all times

t ∈ [0, 1] in three-dimensional graph by using the parameters M = 40, ∆t = 10−2 and

ν = 10−2. From Figure 3.1, we can see that our proposed Algorithm 1 can handle the

shock wave near x = 1 for this problem.

(a) u(x, T) at different times T (b) Surface plot of u(x, t)

Figure 3.1: Physical behavior of our solution in Example 3.1

36

Although this Example 3.1 has the analytical solution, it is in the form of infinite

summations depended on the Fourier coefficients a0 and an which are in the integral form.

We can observe that it is difficult to seek the solution, because its coefficients a0 and an

cannot be directly integrated. Thus, it needs to apply the numerical integration for finding

these values. In addition, the viscous value ν is also at the denominator which produces

oscillations and instabilities for small ν. However, our Algorithm 1 can manipulate these

issues. We demonstrate the behavior of solutions for various small ν = n × 10−3, where

n ∈ {1, 2, 3, 4, 5} from both the exact formula and our method via plotting graphs as

depicted in Figure 3.2. Obviously, the exact formula provides instability and oscillation

which contrasts our method, it still preserves the behaving manner of the solution.

(a) Exact formula (b) Our Algorithm 1

Figure 3.2: Behavior of solutions for small values ν in Example 3.1

Finally, we further illustrate the numerical results from the presented Algorithm 1

by selecting M = 100 and ∆t = 10−2 at the small viscous values ν ∈ {10−3, 10−4} as

shown in Figure 3.3 when increasing the terminal times T . However, it is known that the

analytical solution for ν < 10−2 is not practical because of the slow convergence of the

infinite series. Therefore, these results are not compared to the analytical solution. From

Figure 3.3, it demonstrates the development of a sharp front near x = 1 and afterwards

the amplitude of the sharp front starts to decay. Additionally, the results for ν = 10−4

show the development of a sharp front at more early times earlier than those for ν = 10−3.

Our numerical results are in good agreement with the results obtained by [27], [49] and

37

[62]. Moreover, Figure 3.3 also shows the enlarged profiles of waves in the vicinity of the

right boundary at various terminal times T . We can obviously see that Algorithm 1 gives

robust results even in the very vicinity of the right margin with a high peak. Thus, it is

very advantageous when it comes to deal with a problem involving shock waves.

(a) the viscosity ν = 10−3 (b) the viscosity ν = 10−4

Figure 3.3: Profiles of our solution at small viscosity ν in Example 3.1

Example 3.2. Consider the Burgers’ equation (3.1) with initial and boundary conditions

u(x, 0) = 4x(1− x), x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t > 0.

The analytical solution of this equation is given by (3.12) with the Fourier coefficients

a0 =

∫ 1

0
exp

(
2x3 − 3x2

3ν

)
dx,

an = 2

∫ 1

0
exp

(
2x3 − 3x2

3ν

)
cos (nπx) dx, n ∈ {1, 2, 3, . . . }.

In order to show the performance of Algorithm 1, the MAEs is sought at various

discretizing values of grid numbers M and time steps ∆t as expressed in Table 3.3 for the

terminal time T = 1 and ν = 0.01 which can be seen that the larger M and the smaller ∆t

make more accurate solutions increasingly. Moreover, we compare our numerical solutions

u(x, T) attained by Algorithm 1 of Example 3.2 at different times T with the approximate

38

solutions obtained from the least-squares with quadratic B-spline FEM (Method 1) [34],

the cubic spline quasi-interpolant with multi-node higher order expansion (Method 2)

[65], the Taylor series expansion (Method 3) [4] and the cubic Hermite collocation method

(Method 4) [21] together with their analytical solutions for using the parameters ∆t =

10−4 and M = 80 with the kinematic viscosity ν = 0.01 are demonstrated in Table 3.4

which measured by the absolute error. We can see that our obtained solutions produce

the accuracy more than those other methods. Additionally, we also show the physical

behavior of our obtained solutions via the plotting graphs in Figure 3.4.

Table 3.3: MAE at different M and ∆t of Example 3.2

M ∆t = 10−1 ∆t = 10−2 ∆t = 10−3 ∆t = 10−4 ∆t = 10−5

10 4.6353× 10−2 1.2999× 10−2 4.1062× 10−2 1.6737× 10−2 3.0785× 10−2

20 6.6519× 10−3 2.7186× 10−3 2.6406× 10−3 2.6318× 10−3 2.6310× 10−3

30 5.8743× 10−3 5.2310× 10−4 1.1837× 10−4 1.1746× 10−4 1.1776× 10−4

40 5.8420× 10−3 5.0277× 10−4 5.1058× 10−5 6.6503× 10−6 5.2410× 10−6

50 5.8420× 10−3 5.0143× 10−4 5.0098× 10−5 5.0483× 10−6 5.8617× 10−7

Table 3.4: Comparison of absolute errors of Example 3.2

x T Method 1 Method 2 Method 3 Method 4 Algorithm 1

0.25 0.4 6.58× 10−3 5.93× 10−5 6.06× 10−5 9.37× 10−6 2.9384× 10−6

0.6 6.99× 10−3 3.65× 10−5 5.34× 10−5 3.40× 10−6 1.3140× 10−6

0.8 6.57× 10−3 5.11× 10−5 3.88× 10−5 1.88× 10−5 6.8860× 10−7

1.0 5.99× 10−3 9.59× 10−6 2.95× 10−5 2.95× 10−5 4.1703× 10−7

3.0 2.51× 10−3 3.45× 10−5 5.90× 10−6 4.09× 10−6 5.5235× 10−8

0.50 0.4 4.50× 10−3 7.86× 10−5 1.21× 10−4 1.39× 10−6 2.0152× 10−5

0.6 5.93× 10−3 1.63× 10−5 8.36× 10−5 4.36× 10−5 1.0251× 10−5

0.8 6.39× 10−3 1.35× 10−5 5.64× 10−5 1.64× 10−5 5.5454× 10−6

1.0 6.38× 10−3 7.57× 10−5 4.42× 10−5 4.22× 10−6 3.2320× 10−6

3.0 3.58× 10−3 2.00× 10−5 1.00× 10−5 1.78× 10−8 1.8408× 10−7

0.75 0.4 1.43× 10−3 3.14× 10−7 5.09× 10−4 3.14× 10−7 7.0463× 10−5

0.6 3.76× 10−3 6.05× 10−6 2.46× 10−4 6.05× 10−6 3.4963× 10−5

0.8 5.04× 10−3 2.03× 10−5 1.29× 10−5 3.03× 10−5 1.8200× 10−5

1.0 5.59× 10−3 1.86× 10−5 8.13× 10−4 1.32× 10−5 1.0371× 10−5

3.0 4.08× 10−3 4.30× 10−5 1.16× 10−4 3.04× 10−6 3.9847× 10−7

39

(a) u(x, T) at different times T (b) Surface plot of u(x, t)

Figure 3.4: Physical behavior of our solution in Example 3.2

Similarly, this Example 3.2 has the analytical solution as same as Example 3.1

that it is in the infinite summation form based on the Fourier coefficients a0 and an.

These coefficients cannot be directly integrations and also the small viscosity ν affect

the solution instability and oscillation as shown in Figure 3.5(a). Anywise, our proposed

Algorithm 1 can handle these issues as demonstrated via plotting graph in Figure 3.5(b).

We can see that the solutions obtained from our method for small ν = n × 10−3, where

n ∈ {1, 2, 3, 4, 5} has treated the turbulence of behaving solutions smoothly. Moreover,

if the kinematic viscosity ν is very small, the obtained solution quite peaks near x = 1.

Our presented Algorithm 1 can also manipulate it.

(a) Exact formula (b) Our Algorithm 1

Figure 3.5: Behavior of solutions for small values ν in Example 3.2

40

Finally, we also demonstrate the numerical solutions obtained from Algorithm 1 by

using M = 100 and ∆t = 10−2 at the small viscous values ν ∈ {10−3, 10−4} as depicted

in Figure 3.3 when varying the terminal times T . These obtained numerical solutions of

Example 3.2 provide the physical profiles of travelling wave as well as Example 3.1 which

has the shocking up near x = 1.

(a) the viscosity ν = 10−3 (b) the viscosity ν = 10−4

Figure 3.6: Profiles of our solution at small viscosity ν in Example 3.2

Example 3.3. Consider the Burgers’ equation (3.1) with initial and boundary condition

u(x, 0) =
2πν sin (πx)

σ + cos (πx) , x ∈ [0, 1]

u(0, t) = u(1, t) = 0, t > 0.

The analytical solution given by Wood [64] for an arbitrary constant σ of this equation is

u∗(x, t) =
2πν exp

(
−π2νt

)
sin (πx)

σ + exp (−π2νt) cos (πx) .

In order to demonstrate the efficiency of Algorithm 1, we express the accuracy via

measuring a mean relative error (MRE) since this analytical solution of Example 3.3

closely approaches to zero. Table 3.5 shows the MREs at a variety of discretizing values

to grid numbers M and time steps ∆t for choosing parameters α = 2, terminal time

T = 1 and viscosity ν = 0.001. The approximate results of Example 3.3 obtained by our

presented Algorithm 1 for selecting parameters σ = 2, M = 40, T = 0.001 and ∆t = 10−4

41

with the different viscosity values ν ∈ {0.5, 0.2, 0.1} are compared with those achieved

by Mittal [46] and Ganaie [21]. We can see in Table 3.6 that the developed FIM-CPE

has less error in both L∞ and L2 norms than the other two methods. In Table 3.7, we

compare our solutions versus the solutions reported by Mittal [46] and Rahman [53] for

σ = 100, T = 1 and ∆t = 0.01 with the viscosity ν = 0.005 at the different nodal numbers

M ∈ {10, 20, 40, 80} which observe that the L∞ and L2 errors of our proposed FIM-CPE

still provides slightly less than the errors of both Mittal [46] and Rahman [53]. Also, the

graphical behaviors of our results with ν = 0.1 and σ = 2 are displayed in Figure 3.7.

Table 3.5: MRE at different M and ∆t of Example 3.3

M ∆t = 10−1 ∆t = 10−2 ∆t = 10−3 ∆t = 10−4 ∆t = 10−5

10 2.2092× 10−3 2.2347× 10−3 2.2383× 10−3 2.2386× 10−3 2.2386× 10−3

20 2.0434× 10−5 2.1515× 10−6 3.4126× 10−7 1.6803× 10−7 1.6732× 10−7

30 2.0499× 10−5 2.0604× 10−6 2.0596× 10−7 2.0251× 10−8 4.3790× 10−8

40 2.0497× 10−5 2.0603× 10−6 2.0499× 10−7 2.2363× 10−8 1.6546× 10−7

50 2.0496× 10−5 2.0602× 10−6 2.0508× 10−7 3.2022× 10−8 5.7757× 10−7

Table 3.6: Comparison of error norms at different viscosity ν of Example 3.3

ν
Mittal [46] Ganaie [21] Our Algorithm 1

L∞ L2 L∞ L2 L∞ L2

0.5 7.44× 10−5 2.79× 10−5 2.00× 10−5 3.54× 10−6 1.2721× 10−5 2.1025× 10−6

0.2 1.22× 10−5 4.57× 10−6 3.00× 10−6 5.24× 10−7 8.2543× 10−7 3.9663× 10−7

0.1 3.08× 10−6 1.15× 10−6 2.00× 10−6 3.54× 10−7 1.0395× 10−7 4.9837× 10−8

Table 3.7: Comparison of error norms at different nodes M of Example 3.3

M
Mittal [46] Rahman [53] Our Algorithm 1

L∞ L2 L∞ L2 L∞ L2

10 1.21× 10−7 8.63× 10−8 1.24× 10−7 8.81× 10−8 3.6359× 10−9 2.5761× 10−9

20 3.06× 10−8 2.15× 10−8 3.39× 10−8 2.40× 10−8 3.6387× 10−9 2.5760× 10−9

40 7.64× 10−9 5.37× 10−9 1.12× 10−8 7.94× 10−9 3.6485× 10−9 2.5760× 10−9

80 1.91× 10−9 1.34× 10−9 5.54× 10−9 3.91× 10−9 3.6485× 10−9 2.5760× 10−9

42

(a) u(x, T) at different times T (b) Surface plot of u(x, t)

Figure 3.7: Physical behavior of our solution in Example 3.3

Finally, we further focus on the behavior profiles of travelling waves for Example

3.3 by using M = 100, ∆t = 10−2 and σ = 100 when decreasing the small kinematic

viscosity values ν ∈ {10−2, 10−3} at different times T ∈ {1, 2, 3, 4, 5}. From Figure 3.8,

we can see that our numerical solutions tend to decline as time passes. Moreover, the

motion speed of the solutions, that moves away from the initial solution, depends on the

viscous values ν. The approximate solutions for ν = 10−2 at the different final times T

produce the distribution more than those for ν = 10−3 as presented in Figure 3.8. Hence,

if the kinematic viscosity ν of Example 3.3 is very small, the obtained solutions also slowly

decrease from the initial solution.

(a) the viscosity ν = 10−2 (b) the viscosity ν = 10−3

Figure 3.8: Profiles of our solution at small viscosity ν in Example 3.3

43

Example 3.4. Consider the Burgers’ equation (3.1) for t ≥ 1 with initial condition

u(x, 1) =
x

1 + exp
(
4x2−1
16ν

) , x ∈ [0, 1]

and the Dirichlet boundary conditions are

u(0, t) = 0 and u(1, t) =
(
t+ t

3

2 exp
(
− 1

16ν

))−1
, t ≥ 1.

The analytical solution given by Harris [23] is

u∗(x, t) =
x

t+ t
3

2 exp
(
x2

4νt −
1

16ν

) .
In this Example 3.4, we examine Algorithm 1 by varying the increasing number

of grid points M and the decreasing time step ∆t as shown in Table 3.8 for fixing the

terminal time T = 2 and ν = 0.01. From Table 3.8, we can see that the larger M and the

smaller ∆t produce the MAEs which tend to decline. Moreover, in our computation of

Example 3.4 for the numerous times T ∈ {1.7, 2.4, 3.1} by using Algorithm 1, we choose

M = 100, ∆t = 10−5 with the viscosity ν = 0.005. The L∞ and L2 errors are compared

with the numerical solutions obtained by procedures of Ashpazzadeh [5] and Dogan [17]

as shown in Table 3.9. From this table, it is clearly seen that our method produces much

better solutions than [5] and [17]. The physical behavior of our approximate solution with

viscosity ν = 0.003 and time t ∈ [1, 2] is illustrated in Figure 3.9.

Table 3.8: MAE at different M and ∆t of Example 3.4

M ∆t = 10−1 ∆t = 10−2 ∆t = 10−3 ∆t = 10−4 ∆t = 10−5

10 1.2127× 10−2 5.2961× 10−3 5.3212× 10−3 5.3453× 10−3 5.3477× 10−3

20 5.1856× 10−3 7.3940× 10−4 2.0987× 10−4 1.7183× 10−4 1.6960× 10−4

30 5.1562× 10−3 6.4212× 10−4 6.7560× 10−5 8.7468× 10−6 3.5443× 10−6

40 5.1599× 10−3 6.4149× 10−4 6.5891× 10−5 6.6297× 10−6 6.9639× 10−7

50 5.1609× 10−3 6.4155× 10−4 6.5876× 10−5 6.6053× 10−6 6.6233× 10−7

44

Table 3.9: Comparison of error norms at different times T of Example 3.4

T
Ashpazzadeh [5] Dogan [17] Our Algorithm 1

L∞ L2 L∞ L2 L∞ L2

1.7 2.94× 10−3 1.11× 10−3 8.09× 10−3 2.10× 10−3 1.9031× 10−5 3.9616× 10−5

2.4 2.08× 10−3 9.83× 10−4 1.16× 10−2 3.34× 10−3 2.1251× 10−5 5.1921× 10−5

3.1 4.79× 10−3 2.19× 10−3 1.58× 10−2 4.82× 10−3 2.1016× 10−5 6.1827× 10−5

(a) u(x, T) at different times T (b) Surface plot of u(x, t)

Figure 3.9: Physical behavior of our solution in Example 3.4

Finally, we also show the profiles of travelling waves by using parameters M = 100

and ∆t = 10−2 for small viscosity ν ∈ {10−3, 10−4} at different times T as displayed in

Figure 3.10. We can see that Algorithm 1 can handle the problem with small ν.

(a) the viscosity ν = 10−3 (b) the viscosity ν = 10−4

Figure 3.10: Profiles of our solution at small viscosity ν in Example 3.4

45

Furthermore, we can also show the utility and adaptability of the proposed Algo-

rithm 1 for solving the Burgers’ equation with an initial condition that is in terms of a

continuous piecewise-defined function.

Example 3.5. Consider the Burgers’ equation (3.1) with initial and boundary conditions

given by Mittal and Singhal [47] as follows.

u(x, 0) =


1 for x ∈ [0, 5),

6− x for x ∈ [5, 6),

0 for x ∈ [6, 12),

u(0, t) = 1 and u(12, t) = 0 for t ∈ (0, T], respectively. The numerical solution produced

by our Algorithm 1 exhibits correct physical behavior for several values of the terminal

times T . In Figures 3.11 - 3.13, our obtained numerical solutions are depicted correspond-

ing to ν ∈ {1, 0.1, 0.01}, respectively. We take the parameters M = 240 and ∆t = 10−3

at different terminal times T ∈ {0, 1, 2, 3, 4}. With same parameters, similar patterns

have been depicted by Asaithambi [4], Mittal and Jain [46], and Mittal and Singhal [47].

Figure 3.11: Profiles of our numerical solution for ν = 1 in Example 3.5

46

Figure 3.12: Profiles of our numerical solution for ν = 0.1 in Example 3.5

Figure 3.13: Profiles of our numerical solution for ν = 0.01 in Example 3.5

Example 3.6. Consider the Burgers’ equation (3.1) with initial and boundary conditions

given by Mittal and Singhal [47] as follows.

u(x, 0) =


sin(πx) for x ∈ [0, 1),

−1
2 sin(πx) for x ∈ [1, 2),

0 for x ∈ [2, 5),

u(0, t) = 0 and u(5, t) = 0 for t ∈ (0, T], respectively. The numerical solution produced

47

by our Algorithm 1 exhibits correct physical behavior for several values of the terminal

times T . In Figures 3.14 and 3.15, our obtained numerical solutions are depicted corre-

sponding to the kinematic viscosity ν ∈ {0.1, 0.01}, respectively. We choose the following

parameters M = 100 and ∆t = 10−3 at different terminal times T ∈ {0, 1, 2, . . . , 10}.

With same parameters, similar figures have been demonstrated by Mittal and Jain [46]

with Mittal and Singhal [47].

Figure 3.14: Profiles of our numerical solution for ν = 0.1 in Example 3.6

Figure 3.15: Profiles of our numerical solution for ν = 0.01 in Example 3.6

48

3.4 Acceleration of Algorithm 1

Moreover, we can find the convergence speed of this Algorithm 1 via discretization

parameters. Usually, the convergence of Algorithm 1 depends on the parameters of time

step ∆t and grid spacing which is inversely proportional to the number of grid points

M . In this work, we observe that the grid spacing is not uniformly discretizing because

of using the zeros of Chebyshev polynomial, which differs from the time step ∆t that is

equally discretizing. Therefore, we only illustrate the order of convergence for equally

discretizing parameter ∆t := τ when the number of grid points M is fixed.

In this case, a sequence
(
u⟨m⟩) is said to converge to the solution u∗ with order p

if there exists a constant C such that

∥∥∥u⟨m⟩ − u∗
∥∥∥ < Cτp.

It can be written to another form as ∥u⟨m⟩ − u∗∥ = O (τp) using the big O notation. In

practical, we take the natural logarithmic function ln on both sides of the above expression

in order to approximate the order of convergence p. Thus, we obtain the linear equation

ln ∥u⟨m⟩ − u∗∥ = p ln(τ) + ln(C) with the slope p. However, when we have many time

steps τ , we can transform the above linear equation for estimating the order p to the

following formula: p ≈ ln(enew/eold)
ln(τnew/τold)

, where enew and eold denote the errors with respect to

the new and old time steps τnew and τold, respectively.

Hence, we can seek the orders of convergence p of the previous Examples 3.1 - 3.4

by varying the time steps τ = 2−n for n ∈ {1, 2, 3, 4, 5}. These implementations use the

following parameters: the number of discretizing nodes M = 40, the kinematic viscosity

ν = 0.01 at the terminal time T = 1 for Examples 3.1 - 3.3 and T = 2 for Example 3.4

which is demonstrated in Table 3.10 and Figure 3.16. The convergence orders p := lim
i→∞

pi

in Table 3.10 are computed based on the Euclidean norm ei := ∥u⟨m⟩−u∗∥2. From Table

3.10, we can see that the convergence orders pi approach one for all examples which they

are really corresponding to the process used, i.e., the forward difference quotient. Usually,

the forward difference method produces an algorithm complexity O(τ) or linear order of

49

convergence. However, we can accelerate the speed of this Algorithm 1 by using other

methods to deal with the temporal variable, instead of the forward difference method,

such as the Crank-Nicolson method [20].

Table 3.10: Convergence orders p using forward difference of Examples 3.1 - 3.4

τ
Example 3.1 Example 3.2 Example 3.3 Example 3.4

ei pi ei pi ei pi ei pi

2−1 8.255× 10−1 - 7.661× 10−1 - 5.016× 10−6 - 9.908× 10−2 -

2−2 2.490× 10−1 1.7287 2.049× 10−1 1.9025 2.547× 10−6 0.97776 4.458× 10−2 1.1522

2−3 4.412× 10−2 2.4971 4.678× 10−2 2.1311 1.283× 10−6 0.98871 2.044× 10−2 1.1244

2−4 2.303× 10−2 0.9374 2.289× 10−2 1.0311 6.443× 10−7 0.99431 9.832× 10−3 1.0564

2−5 1.097× 10−2 1.0700 1.092× 10−2 1.0675 3.228× 10−7 0.99715 4.836× 10−3 1.0236

(a) Example 3.1 (b) Example 3.2

(c) Example 3.3 (d) Example 3.4

Figure 3.16: Graphs of linearly convergence orders p of Examples 3.1 - 3.4

50

Next, in this section, we accelerate the convergence speed of the proposed Algorithm

1 by using the Crank-Nicolson method [20] which is an average between the forward

difference method at iteration m− 1 and the backward difference method at iteration m.

It is well-known that the Crank-Nicolson method always provides the time complexity

O(τ2) or quadratic order of convergence. Thus, we start the process by reforming (3.1)

that its left-hand-side term remains the time derivative term only and moves others to

the right-hand side. Then, we have

∂u

∂t
= ν

∂2u

∂x2
− u

∂u

∂x
:= G(x, t, u).

After that, we apply the Crank-Nicolson method to the above equation, that is

u⟨m⟩ − u⟨m−1⟩

τ
=

1

2

(
G⟨m−1⟩ +G⟨m⟩

)
, (3.13)

where τ is the time step, G⟨m−1⟩ := G(x, tm−1, u
⟨m−1⟩) is the right-hand-side term of

the forward difference process at iteration m− 1 and G⟨m⟩ := G(x, tm, u
⟨m⟩) is the right-

hand-side term of the backward difference process at iteration m. We observe that some

terms contained in G consist of the nonlinear term u∂u
∂x which is manipulated by using

the linearization method. In fact, the nonlinear term can be linearized in many ways.

For convenience, we linearize the nonlinear term in the same way as in (3.4). Then, we

obtain the terms G⟨m−1⟩ and G⟨m⟩ in (3.13) which are

G⟨m−1⟩ = ν
∂2u⟨m−1⟩

∂x2
− u⟨m−1⟩∂u

⟨m⟩

∂x
,

G⟨m⟩ = ν
∂2u⟨m⟩

∂x2
− u⟨m−1⟩∂u

⟨m⟩

∂x
.

When replacing G⟨m−1⟩ and G⟨m⟩ to (3.13), it becomes

u⟨m⟩(x)− u⟨m−1⟩(x)

τ
=
ν

2

(
∂2u⟨m−1⟩(x)

∂x2
+
∂2u⟨m⟩(x)

∂x2

)
− u⟨m−1⟩(x)

∂u⟨m⟩(x)

∂x
.

Next, we apply our developed FIM-CPE to eliminate derivatives from the above equation

51

by taking twice integrals on both sides. Then, we have

∫ x

a

∫ ξ2

a

(
u⟨m⟩(ξ1)− u⟨m−1⟩(ξ1)

τ

)
dξ1dξ2 =

ν

2

(
u⟨m−1⟩(x) + u⟨m⟩(x)

)
− q(x) + d1x+ d2,

where q(x) is the twice integrations of the nonlinear term which is performed in the same

way as in Section 3.2, d1 and d2 are arbitrary constants emerged from the process of

integrations. After that, we vary x ∈ {x1, x2, x3, . . . , xM} that are generated by the zeros

of Chebyshev polynomial RM (x) to the above equation and rearrange them to construct

the matrix form

A2

τ

(
u⟨m⟩ − u⟨m−1⟩

)
=
ν

2

(
u⟨m−1⟩ + u⟨m⟩

)
− Q⟨m−1⟩u⟨m⟩ + d1x + d2i.

It can be simplified to

(
A2

τ
− νI

2
+ Q⟨m−1⟩

)
u⟨m⟩ − d1x − d2i =

(
A2

τ
+
νI
2

)
u⟨m−1⟩, (3.14)

where Q⟨m−1⟩ = Adiag(u⟨m−1⟩) − A2diag(R′R−1u⟨m−1⟩) and the other parameters are

defined as in Section 3.2. Finally, we construct the linear system from (3.14) and the

boundary conditions (3.9) and (3.10) which is


A2

τ − νI
2 + Q⟨m−1⟩ −x −i

hlR−1 0 0

hrR−1 0 0




u⟨m⟩

d1

d2

 =


(

A2

τ + νI
2

)
u⟨m−1⟩

ψ1(tm)

ψ2(tm)

 . (3.15)

Therefore, we can solve the linear system (3.15) in order to find an approximate solution

u⟨m⟩ which it produces the accurate solution higher than the previous procedure described

by (3.11) under the same parameters.

In order to show that the order of convergence p for the accelerated Algorithm 1

is significantly improved, we chose the same parameters as we have used in Table 3.10

to examine this method described by (3.15) which is demonstrated in Table 3.11 and

Figure 3.17. In Table 3.11, we find the convergence order p := lim
i→∞

pi corresponding to

52

the Euclidean error norm ei := ∥u⟨m⟩ − u∗∥2, where u⟨m⟩ is approximate solution at the

terminal time. We can see that the obtained convergence orders p for all Examples 3.1 - 3.4

approach two or O(τ2). It is really coinciding the time complexity of the Crank-Nicolson

method that actually gives the quadratically convergence order.

Table 3.11: Convergence orders p using Crank-Nicolson of Examples 3.1 - 3.4

τ
Example 3.1 Example 3.2 Example 3.3 Example 3.4

ei pi ei pi ei pi ei pi

2−1 9.607× 10−1 - 8.453× 10−1 - 4.272× 10−8 - 6.962× 10−2 -

2−2 1.497× 10−1 2.6821 1.532× 10−1 2.4635 1.067× 10−8 2.0004 1.305× 10−2 2.4151

2−3 1.971× 10−2 2.9249 1.346× 10−2 3.5089 2.669× 10−9 2.0001 2.878× 10−3 2.1812

2−4 2.316× 10−3 3.0888 2.383× 10−3 2.4978 6.672× 10−10 2.0000 7.060× 10−4 2.0274

2−5 5.813× 10−4 1.9946 2.383× 10−4 1.9949 1.668× 10−10 2.0000 1.756× 10−4 2.0067

(a) Example 3.1 (b) Example 3.2

(c) Example 3.3 (d) Example 3.4

Figure 3.17: Graphs of quadratically convergence orders p of Examples 3.1 - 3.4

CHAPTER IV

TIME-FRACTIONAL BBMB EQUATION

In this section, we briefly explain the physical meaning of the time-fractional BBMB

eqution. We then give some definitions of time-fractional order derivative. Next, we create

a numerical algorithm for solving time-fractional BBMB equation (1.2) by extending the

idea form Algorithm 1 that uses to solving the Burgers’ equation. Finally, we implement

the obtained algorithm via several experimental examples in order to demonstrate that

our proposed algorithm provides a good accuracy.

4.1 Benjamin-Bona-Mahony-Burgers Equation

The Benjamin-Bona-Mahony-Burgers or BBMB equation was first investigated by

Benjamin et al. [9]. It describes the model for propagation of long waves which incorpo-

rates nonlinear and dissipative effects. Moreover, it is used in the analysis of the surface

waves for long wavelength in liquids, hydromagnetic waves in cold plasma, acoustic-gravity

waves in compressible fluids and acoustic waves in harmonic crystals [1]. Many mathe-

maticians paid their attention to the dynamics of the BBMB equation in the form

∂u

∂t
− ∂3u

∂x2∂t
+
∂u

∂x
+ u

∂u

∂x
= 0,

where u represents the fluid velocity, ut is an acceleration term, uxxt is a dispersive term,

ux is an advection term and uux is a nonlinear convection term.

However, in this dissertation, we attempt to adjust the BBMB equation by following

Kumar and Kumar [33] in order to increase the attractiveness of this equation and for

testing our algorithm that we will create in Section 4.3. This BBMB equation is adjusted

by supplementing the external forced function f(x, t), like pressure, on the right-hand

side and modifying the acceleration term ut to be the time-fractional derivative term

54

Dα
t u instead that accounts simulating the effect of a decrease of the permeability in time

delay, see [20]. Therefore, the studied equation in this chapter becomes

Dα
t u− ∂3u

∂x2∂t
+
∂u

∂x
+ u

∂u

∂x
= f(x, t)

which called time-fractional BBMB equation. Next, let us clarify the definition of the

fractional derivative.

4.2 Time-Fractional Order Derivative

Before embarking into the details for constructing a numerical algorithm via the de-

veloped FIM-CPE to overcome the time-fractional BBMB equations in one dimension, we

provide the basic definitions of fractional derivatives. The necessary notations and some

important facts used throughout this chapter are also given. More details on definitions

and basic results of fractional calculus can be found in [51].

Definition 4.1. A real-valued function u(t), t > 0 can be defined on the space Cµ, µ ∈ R,

if there exist a real number ρ > µ such that u(t) = tρu1(t), where u1(t) ∈ C[0,∞) and it

is defined on the space Cn
µ , if and only if u(n) ∈ Cµ, n ∈ N.

Definition 4.2. The Riemann-Liouville fractional integral operator of order α ≥ 0 of an

integrable function u ∈ Cµ, µ > −1 is defined by

Iαu(t) =


1

Γ(α)

∫ t
0

u(s)
(t−s)1−αds for α > 0,

u(t) for α = 0.

Actually, there are several definition for fractional-order derivative. However, here,

we give one definition that is used in this chapter.

Definition 4.3. The Caputo fractional derivative Dα of u ∈ Cn
−1, n ∈ N is defined by

Dαu(t) = In−αDnu(t) =


1

Γ(n−α)

∫ t
0

u(n)(s)
(t−s)1−n+αds for α ∈ (n− 1, n),

u(n)(t) for α = n.

55

4.3 Algorithm for Solving Time-Fractional BBMB Equation

Next, we devise the numerical algorithm for seeking approximate solutions of the

time-fractional BBMB equation (1.2) in one-dimensional space as considered by Kumar

and Kumar [33] in 2014. Let u be an approximate solution of v in (1.2), then our

determined BBMB equation can be written in the following form as

Dα
t u− ∂3u

∂x2∂t
+
∂u

∂x
+ u

∂u

∂x
= f(x, t), (x, t) ∈ (0, L)× (0, T], (4.1)

subject to the initial condition:

u(x, 0) = ϕ(x), x ∈ [0, L], (4.2)

and the Dirichlet boundary conditions:

u(0, t) = ψ1(t), t ∈ (0, T],

u(L, t) = ψ2(t), t ∈ (0, T],
(4.3)

where L and T are positive real numbers, f , ϕ, ψ1 and ψ2 are given sufficiently smooth

functions, α ∈ (0, 1) is an order of time fractional derivative term and also u is unknown

function of spatial variable x and temporal variable t to be solved. Suppose that u is a

smooth real-valued function of the temporal coordinate. Let us first use the technique of

linearization to handle with (4.1) by taking the iteration at time tm = m∆t, where ∆t is

a time step and m ∈ N. Then, we obtain

Dα
t u(x, t)|t=tm

− ∂3u(x, t)

∂x2∂t

∣∣∣∣
t=tm

+
∂u⟨m⟩(x)

∂x
+ u⟨m−1⟩(x)

∂u⟨m⟩(x)

∂x
= f(x, tm), (4.4)

where u⟨m⟩(x) = u(x, tm) is the numerical solution at mth time iteration. Next, consider

the time-fractional derivative term of (4.4) by using the Caputo sense in Definition 4.3,

then we have

Dα
t u(x, t)|t=tm

=
1

Γ(1− α)

∫ tm

0

us(x, s)

(tm − s)α
ds =

1

Γ(1− α)

m−1∑
i=0

∫ ti+1

ti

us(x, s)

(tm − s)α
ds.

56

After that, we use the first-order forward difference quotient to approximate the time

derivative term in the above equation. Note that we can employ other methods to ap-

proximate the derivative term with respect to time. For convenience, in this work, we

choose the forward difference method and also let an index j := m− i− 1 in order to use

between deriving the following process as

Dα
t u(x, t)|t=tm

≈ 1

Γ(1− α)

m−1∑
i=0

∫ ti+1

ti

(tm − s)−α

(
u⟨i+1⟩(x)− u⟨i⟩(x)

∆t

)
ds

=
1

Γ(1− α)

m−1∑
i=0

(
u⟨i+1⟩(x)− u⟨i⟩(x)

∆t

)(
(tm − ti)

1−α − (tm − ti+1)
1−α

1− α

)

=
(∆t)1−α

Γ(2− α)

m−1∑
i=0

(
u⟨i+1⟩(x)− u⟨i⟩(x)

∆t

)(
(m− i)1−α − (m− i− 1)1−α

)
=

(∆t)−α

Γ(2− α)

m−1∑
j=0

(
u⟨m−j⟩(x)− u⟨m−j−1⟩(x)

) (
(j + 1)1−α − j1−α

)
=

m−1∑
j=0

wj

(
u⟨m−j⟩(x)− u⟨m−j−1⟩(x)

)
, (4.5)

where wj =
(∆t)−α

Γ(2−α)

(
(j + 1)1−α − j1−α

)
. Now, we consider the third-order derivative term

with respect to twice-spatial and single-temporal variables in (4.4). We estimate the time

derivative of this term by hiring the same method as mentioned in Burgers’ equation, i.e.,

the first-order forward difference quotient. Then, we have

∂3u(x, t)

∂x2∂t

∣∣∣∣
t=tm

=
∂2

∂x2

(
∂u(x, t)

∂t

)∣∣∣∣
t=tm

≈ ∂2

∂x2

(
u⟨m⟩(x)− u⟨m−1⟩(x)

∆t

)
. (4.6)

Hence, we can replace (4.5) and (4.6) into (4.4) to obtain

w0

(
u⟨m⟩(x)− u⟨m−1⟩(x)

)
+

m−1∑
j=1

wj

(
u⟨m−j⟩(x)− u⟨m−j−1⟩(x)

)
− 1

∆t

(
∂2u⟨m⟩(x)

∂x2
− ∂2u⟨m−1⟩(x)

∂x2

)
+
∂u⟨m⟩(x)

∂x
+ u⟨m−1⟩(x)

∂u⟨m⟩(x)

∂x
= f(x, tm).

Next, to eliminate all derivatives concerning the spatial variable out of the above equation,

we consume the developed FIM-CPE in Section 2.4.1 by taking the twice-layer integrals

from 0 to the zero xk of the Chebyshev polynomial RM (x) that is generated by (2.3).

57

Then, we get the following equation

w0

∫ xk

0

∫ ξ2

0

(
u⟨m⟩(ξ1)− u⟨m−1⟩(ξ1)

)
dξ1dξ2

+

m−1∑
j=1

wj

∫ xk

0

∫ ξ2

0

(
u⟨m−j⟩(ξ1)− u⟨m−j−1⟩(ξ1)

)
dξ1dξ2

+
1

∆t

(
u⟨m−1⟩(xk)− u⟨m⟩(xk)

)
+

∫ xk

0
u⟨m⟩(ξ2) dξ2 + d1xk + d2

+

∫ xk

0

∫ ξ2

0

(
u⟨m−1⟩(ξ1)

∂u⟨m⟩(ξ1)

∂ξ1

)
dξ1dξ2 =

∫ xk

0

∫ ξ2

0
f(ξ1, tm) dξ1dξ2, (4.7)

where d1 and d2 are arbitrary constants emerged in the process of integration. After that,

we consider the nonlinear term in (4.7) which is denoted by q(xk). Anywise, we have

used to consider this nonlinear term q(xk) for the Burgers’ equation in previous chapter.

Thus, this nonlinear term q(xk) is approximated by (3.6), that is,

q = Adiag
(
u⟨m−1⟩)u⟨m⟩ − A2diag

(
R′R−1u⟨m−1⟩)u⟨m⟩, (4.8)

where q = [q(x1), q(x2), q(x3), . . . , q(xM)]⊤, u⟨z⟩ =
[
u⟨z⟩(x1), u

⟨z⟩(x2), . . . , u
⟨z⟩(xM)

]⊤
for z ∈ N∪{0}, A = RR−1 is the M ×M one-dimensional Chebyshev integration matrix

explained in Section 2.4.1 and

R′ =



R′
0(x1) R′

1(x1) · · · R′
M−1(x1)

R′
0(x2) R′

1(x2) · · · R′
M−1(x2)

...
...

R′
0(xM) R′

1(xM) · · · R′
M−1(xM)


.

Consequently, by varying the zero xk ∈ {x1, x2, x3, . . . , xM} in (4.7) and consuming (4.8),

we can transform the integral equation (4.7) to the matrix form by using our developed

FIM-CPE as follows

w0A2
(
u⟨m⟩ − u⟨m−1⟩)+ m−1∑

j=1

wjA2
(
u⟨m−j⟩ − u⟨m−j−1⟩)+ 1

∆t
u⟨m−1⟩ − 1

∆t
u⟨m⟩

+Au⟨m⟩ + d1x + d2i + Adiag
(
u⟨m−1⟩)u⟨m⟩ − A2diag

(
R′R−1u⟨m−1⟩)u⟨m⟩ = A2f⟨m⟩

58

or it can be simplified as

(
w0A2 − 1

∆t
I + A + Adiag

(
u⟨m−1⟩)− A2diag

(
R′R−1u⟨m−1⟩))u⟨m⟩ + d1x + d2i

= A2f⟨m⟩ −
m−1∑
j=1

wjA2
(
u⟨m−j⟩ − u⟨m−j−1⟩)+ (w0A2 − 1

∆t
I
)

u⟨m−1⟩, (4.9)

where I is an M × M identity matrix, x = [x1, x2, x3, . . . , xM]⊤, i = [1, 1, 1, . . . , 1]⊤,

and f⟨m⟩ = [f(x1, tm), f(x2, tm), f(x3, tm), . . . , f(xM , tm)]⊤. From the given Dirichlet

boundary conditions (4.3), we can convert them into vector forms by using the linear

combination of Chebyshev polynomial (2.11) at the mth iteration as follow:

u⟨m⟩(0) =

M−1∑
n=0

c⟨m⟩
n Rn(0) =

M−1∑
n=0

c⟨m⟩
n (−1)n := hlc⟨m⟩ = hlR−1u⟨m⟩ = ψ1(tm), (4.10)

u⟨m⟩(L) =

M−1∑
n=0

c⟨m⟩
n Rn(L) =

M−1∑
n=0

c⟨m⟩
n (1)n := hrc⟨m⟩ = hrR−1u⟨m⟩ = ψ2(tm), (4.11)

where tm = m∆t for m ∈ N, hl = [1,−1, 1, . . . , (−1)M−1] and hr = [1, 1, 1, . . . , 1].

Finally, from (4.9), (4.10) and (4.11), we can combine them to construct the system

of linear equations at the iterative time tm for m ∈ N, which contains M + 2 unknown

variables including u⟨m⟩, d1 and d2, as follows:


K⟨m−1⟩ x i

hlR−1 0 0

hrR−1 0 0




u⟨m⟩

d1

d2

 =


A2f⟨m⟩ − s⟨m−1⟩ +

(
w0A2 − 1

∆tI
)

u⟨m−1⟩

ψ1(tm)

ψ2(tm)

 , (4.12)

where K⟨m−1⟩ := w0A2 − 1
∆tI + A + Adiag

(
u⟨m−1⟩) − A2diag

(
R′R−1u⟨m−1⟩) is the

coefficient matrix of u⟨m⟩ and s⟨m−1⟩ :=
∑m−1

j=1 wjA2
(
u⟨m−j⟩ − u⟨m−j−1⟩) for m ∈ N.

Anywise, we remark that for s⟨0⟩ = 0, because the initial step of this summation is

already separated during the process of transforming to the integral equation. Therefore,

the solution u⟨m⟩ can be found by solving the system of linear equation (4.12) with starting

by u⟨0⟩ = [ϕ(x1), ϕ(x2), ϕ(x3), . . . , ϕ(xM)]⊤. We notice here that at the terminal time T ,

59

the numerical solution u(x, T) for each arbitrary x ∈ (0, L) can be computed by

u(x, T) =

M−1∑
n=0

c⟨m⟩
n Rn(x) = R(x)c⟨m⟩ = R(x)R−1u⟨m⟩,

where R(x) = [R0(x), R1(x), R2(x), . . . , RM−1(x)], R−1 is the M ×M matrix defined by

(2.8) and u⟨m⟩ is the final iteration of (4.12).

For computational convenience, we provide the following algorithm in the form of

pseudocode for finding an approximate solution of the one-dimensional time-fractional

BBMB equation by using our developed FIM-CPE.

Algorithm 2 Algorithm for solving time-fractional BBMB equation by the FIM-CPE

Input: α, x, L, T , M , ∆t, ϕ(x), ψ1(t), ψ2(t) and f(x, t);

Output: An approximate solution u(x, T);

1: Set xk = L
2

[
cos
(
2k−1
2M π

)
+ 1
]

for k ∈ {1, 2, 3, . . . ,M} in descending order;

2: Compute x, i, hl, hr, I, A, R′, R, R−1, R(x) and w0;

3: Construct u⟨0⟩ = [ϕ(x1), ϕ(x2), ϕ(x3), . . . , ϕ(xM)]⊤;

4: Set m = 1 and t1 = ∆t;

5: while tm ≤ T do

6: Set s⟨m−1⟩ = 0;

7: for j = 1 to m− 1 do

8: Compute wj =
(∆t)−α

Γ(2−α)

(
(j + 1)1−α − j1−α

)
;

9: Compute s⟨m−1⟩ = s⟨m−1⟩ + wjA2
(
u⟨m−j⟩ − u⟨m−j−1⟩);

10: end for

11: Compute K⟨m−1⟩ = w0A2− 1
∆tI+A+Adiag

(
u⟨m−1⟩)−A2diag

(
R′R−1u⟨m−1⟩);

12: Compute f ⟨m⟩ = [f(x1, tm), f(x2, tm), f(x3, tm), . . . , f(xM , tm)]⊤;

13: Find u⟨m⟩ by solving the iterative linear system (4.12);

14: Update m = m+ 1;

15: Compute tm = m∆t;

16: end while

17: return u(x, T) = R(x)R−1u⟨m⟩;

60

4.4 Numerical Examples for Testing Algorithm 2

In this section, we implement the proposed Algorithm 2 based on our developed

FIM-CPE for solving the time-fractional BBMB equations in order to show the efficiency

and effectiveness of our scheme through several numerical examples which are measured

the accurate results by the MAE = 1
M

∑M
i=1 |u∗(xi, t)− u(xi, t)|, where u∗ and u are the

analytical and numerical solutions, respectively.

Example 4.1. Consider the time-fractional BBMB equation (4.1) with the source term

f(x, t) =
3
√
πx4(x− 1)t

3

2
−α

4Γ(52 − α)
+ x2t

1

2

(
5x7t

5

2 − 9x6t
5

2 + 4x5t
5

2 + 5x2t− 4xt− 30x+ 18
)

subject to the initial condition:

u(x, 0) = 0, x ∈ [0, 1], (4.13)

and the Dirichlet boundary conditions:

u(0, t) = 0 and u(1, t) = 0, t ∈ (0, 1]. (4.14)

The analytical solution given by Shen and Zhu [57] is u∗(x, t) = x4(x−1)t
3

2 . In the

numerical testing, we compare the approximate results obtained by our Algorithm 2 with a

Crank-Nicolson linear difference scheme (CNLDS) proposed by Shen and Zhu [57] in 2018

which measured by the MAE for α = 0.5 at various M and ∆t as shown in Table 4.1. We

can see that our presented Algorithm 2 gives higher accuracy than the CNLDS under the

same parameters and conditions. Moreover, we also illustrate the MAE at the final time

T = 1 for α = 0.5, M = 40 and the different time steps ∆t ∈ {0.05, 0.01, 0.005, 0.001}

in Table 4.2 and for ∆t = 0.001, M = 40 and the various fractional orders of derivative

α ∈ {0.1, 0.3, 0.7, 0.9} in Table 4.3. Finally, the graph of our numerical solutions u(x, T)

at the different terminal times T and the surface plot of our numerical solutions u(x, t)

are provided in Figure 4.1 for α = 0.5, M = 40 and ∆t = 0.001.

61

Table 4.1: MAE at various M and ∆t for α = 0.5 of Example 4.1

M
Our Algorithm 2 CNLDS [57]

∆t = 0.01 ∆t = 0.005 ∆t = 0.001 ∆t = 0.001

10 1.7347× 10−4 8.7727× 10−5 1.7810× 10−5 1.8414× 10−3

20 1.7301× 10−4 8.7495× 10−5 1.7763× 10−5 5.0479× 10−4

40 1.7289× 10−4 8.7436× 10−5 1.7751× 10−5 1.3219× 10−4

80 1.7286× 10−4 8.7421× 10−5 1.7748× 10−5 3.3657× 10−5

Table 4.2: MAE at various ∆t for α = 0.5 and M = 40 and of Example 4.1

x ∆t = 0.05 ∆t = 0.01 ∆t = 0.005 ∆t = 0.001

0.2 1.3072× 10−3 2.7980× 10−5 1.4266× 10−5 2.9342× 10−6

0.4 1.8644× 10−3 3.8426× 10−5 1.9242× 10−5 3.8423× 10−6

0.6 1.3842× 10−3 2.9035× 10−4 1.4669× 10−4 2.9731× 10−5

0.8 2.5887× 10−3 5.4398× 10−4 2.7512× 10−4 5.5861× 10−5

Table 4.3: MAE at various α for ∆t = 0.001 and M = 40 of Example 4.1

x α = 0.1 α = 0.3 α = 0.7 α = 0.9

0.2 2.8624× 10−6 2.9140× 10−6 2.8699× 10−6 2.4680× 10−6

0.4 4.0394× 10−6 3.9104× 10−6 3.9486× 10−6 4.7687× 10−6

0.6 3.0072× 10−5 2.9863× 10−5 2.9838× 10−5 3.0944× 10−5

0.8 5.6196× 10−5 5.5998× 10−5 5.5923× 10−5 5.6838× 10−5

(a) The solution at different times T (b) The surface plot of solution

Figure 4.1: Graphical behavior of our solution in Example 4.1

62

Example 4.2. Consider the time-fractional BBMB equation (4.1) with the source term

f(x, t) =
2ext2−α

Γ(3− α)
+ tex

(
t3ex + t− 2

)
subject to the initial condition (4.13) and the Dirichlet boundary conditions:

u(0, t) = t2 and u(1, t) = et2, t ∈ (0, 1].

The analytical solution given by Esen and Tasbozan [18] is u∗(x, t) = t2ex. For the

numerical examination using Algorithm 2, we choose parameters α = 0.5 and ∆t = 0.01

to show the MAEs at different nodes M in Table 4.4. We also display the MAEs at many

time steps ∆t for α = 0.5 and M = 40 in Table 4.5. We can see that for increasing

of nodal point M , it almost does not affect to the accuracy which obviously contracts

the decreasing of time step ∆t. Further, we vary the fractional orders of derivative α

at ∆t = 0.001 and M = 40 to show the MAE in Table 4.6. Figure 4.2 provides our

graphical solutions of this problem including the plotting solutions at different times T

and the surface plot under the parameters α = 0.5, M = 40 and ∆t = 0.001.

Table 4.4: MAE at various M for α = 0.5 and ∆t = 0.01 of Example 4.2

x M = 5 M = 10 M = 15 M = 20

0.2 7.9553× 10−5 6.4013× 10−5 6.4013× 10−5 6.4013× 10−5

0.4 6.3990× 10−5 6.1063× 10−5 6.1063× 10−5 6.1063× 10−5

0.6 3.4929× 10−5 1.1182× 10−5 1.1182× 10−5 1.1182× 10−5

0.8 4.4970× 10−5 3.9815× 10−5 3.9815× 10−5 3.9815× 10−5

Table 4.5: MAE at various ∆t for α = 0.5 and M = 40 of Example 4.2

x ∆t = 0.05 ∆t = 0.01 ∆t = 0.005 ∆t = 0.001

0.2 1.4907× 10−4 6.4013× 10−5 4.1055× 10−5 1.0379× 10−5

0.4 5.1386× 10−4 6.1063× 10−5 4.6138× 10−5 1.2941× 10−5

0.6 9.1238× 10−4 1.1182× 10−5 2.3799× 10−5 9.0593× 10−6

0.8 9.7423× 10−4 3.9815× 10−5 5.5279× 10−6 2.2631× 10−6

63

Table 4.6: MAE at various α for ∆t = 0.001 and M = 40 of Example 4.2

x α = 0.1 α = 0.3 α = 0.7 α = 0.9

0.2 1.1518× 10−5 1.1292× 10−5 4.5130× 10−6 2.8758× 10−5

0.4 1.4991× 10−5 1.4551× 10−5 2.9661× 10−6 5.3208× 10−5

0.6 1.1558× 10−5 1.1002× 10−5 2.4827× 10−6 6.6751× 10−5

0.8 4.3173× 10−6 3.8567× 10−6 6.8200× 10−6 5.6685× 10−5

(a) The solution at different times T (b) The surface plot of solution

Figure 4.2: Graphical behavior of our solution in Example 4.2

Example 4.3. Consider the time-fractional BBMB equation (4.1) with the source term

f(x, t) =
t1−α sin(πx)
Γ(2− α)

+ π2 sin(πx) + πt sin(πx) + πt2

2
sin(2πx)

subject to the same initial condition (4.13) and the Dirichlet boundary conditions (4.14).

The analytical solution given by Zarebnia and Parvaz [71] is u∗(x, t) = t sin(πx). In

the numerical testing of this problem with Algorithm 2, we consider the MAE of this

problem by selecting the same parameters as Example 4.2 which varies along the nodal grid

numbers M , the time steps ∆t and the fractional orders of derivative α as demonstrated

in Tables 4.7, 4.8 and 4.9, respectively. We can observe that the obtained solutions have

produced a consequences similar to Examples 4.2. Finally, we depict the plotting of

numerical solutions u(x, T) at the different terminal times T and the surface plot of our

solution u(x, t) in Figure 4.3 for selecting α = 0.5, M = 40 and ∆t = 0.001.

64

Table 4.7: MAE at various M for α = 0.5 and ∆t = 0.01 of Example 4.3

x M = 5 M = 10 M = 15 M = 20

0.2 7.9553× 10−5 6.4013× 10−5 6.4013× 10−5 6.4013× 10−5

0.4 6.3990× 10−5 6.1063× 10−5 6.1063× 10−5 6.1063× 10−5

0.6 3.4929× 10−5 1.1182× 10−5 1.1182× 10−5 1.1182× 10−5

0.8 4.4970× 10−5 3.9815× 10−5 3.9815× 10−5 3.9815× 10−5

Table 4.8: MAE at various ∆t for α = 0.5 and M = 40 of Example 4.3

x ∆t = 0.05 ∆t = 0.01 ∆t = 0.005 ∆t = 0.001

0.2 1.0218× 10−3 1.9609× 10−4 9.7531× 10−5 1.9424× 10−5

0.4 7.5199× 10−4 1.4293× 10−4 7.1000× 10−5 1.4126× 10−5

0.6 4.4809× 10−4 8.8329× 10−5 4.4082× 10−5 8.8029× 10−6

0.8 9.2119× 10−4 1.7832× 10−4 8.8787× 10−5 1.7698× 10−5

Table 4.9: MAE at various α for ∆t = 0.001 and M = 40 of Example 4.3

x α = 0.1 α = 0.3 α = 0.7 α = 0.9

0.2 1.9561× 10−5 1.9499× 10−5 1.9335× 10−5 1.9232× 10−5

0.4 1.4256× 10−5 1.4198× 10−5 1.4039× 10−5 1.3936× 10−5

0.6 8.7989× 10−6 8.7996× 10−6 8.8102× 10−6 8.8226× 10−6

0.8 1.7765× 10−5 1.7734× 10−5 1.7658× 10−5 1.7615× 10−5

(a) The solution at different times T (b) The surface plot of solution

Figure 4.3: Graphical behavior of our solution in Example 4.3

65

Furthermore, we can find the convergence speed of the proposed Algorithm 2 corre-

sponding to the time step ∆t := τ . We observe that this time-fractional BBMB problem

includes two derivative terms with respect to time that are Dα
t u and uxxt. When we

approximate these terms by using the forward difference method, it produces the time

complexities O(τ2−α) and O(τ), respectively. Since α ∈ (0, 1), the combination of those

terms provide the larger complexity, i.e., O(τ). Accordingly, our presented Algorithm 2

converges with linear order to the exact solution without a fractional order α which is

displayed via all previous Examples 4.1 - 4.3.

Next, we show the order of convergence p := lim
i→∞

pi based on the Euclidean error

norm ei := ∥u⟨m⟩ −u∗∥2, where u⟨m⟩ is a numerical solution at the terminal time and u∗

is the exact solution, in Tables 4.10 - 4.12 and Figures 4.4 - 4.6. In each table, we vary the

time steps τ = 2−n for n ∈ {1, 2, 3, 4, 5} and the fractional order α ∈ {0.0001, 0.5, 0.9999}

by using the number of grid points M = 20 at the terminal time T = 1. From all Tables

4.10 - 4.12, no matter the fractional orders α approach the zero side, one side or it is

in between the zero and one sides, we can see that the obtained convergence orders p

corresponding to the time steps τ are indeed linearly order or O(τ), which they are

independent of the fractional order α for all three Examples 4.1 - 4.3.

Additionally, if we would like to accelerate the convergence speed of Algorithm

2, then we can modify it in the same way as in Section 3.4 which we can use the

Crack-Nicolson method [20] instead of the forward difference method. Then, the ob-

tained Algorithm 2 certainly provides the time complexity O(τ2) or quadratically order

of convergence. However, it is easy to construct the accelerated Algorithm 2 with the

Crack-Nicolson method by directly imitating the created process as shown in Section 3.4.

Thus, in this chapter, we omit the construction of procedure for solving the time-fractional

BBMB equation based on the Crank-Nicolson method.

66

Table 4.10: Convergence orders p at each fractional order α of Example 4.1

τ
α = 0.0001 α = 0.5 α = 0.9999

ei pi ei pi ei pi

2−1 4.4674× 10−2 - 4.5057× 10−2 - 4.6876× 10−2 -

2−2 2.4644× 10−2 0.8581 2.4718× 10−2 0.8662 2.5763× 10−2 0.8635

2−3 1.3176× 10−2 0.9034 1.3165× 10−2 0.9088 1.3748× 10−2 0.9060

2−4 6.8964× 10−3 0.9339 6.8731× 10−3 0.9376 7.1904× 10−3 0.9350

2−5 3.5585× 10−3 0.9545 3.5401× 10−3 0.9571 3.7093× 10−3 0.9549

Table 4.11: Convergence orders p at each fractional order α of Example 4.2

τ
α = 0.0001 α = 0.5 α = 0.9999

ei pi ei pi ei pi

2−1 5.6501× 10−1 - 6.2905× 10−1 - 8.9250× 10−1 -

2−2 2.5668× 10−1 1.1383 2.8080× 10−1 1.1637 4.6797× 10−1 0.9314

2−3 1.1476× 10−1 1.1614 1.2184× 10−1 1.2045 1.6922× 10−1 1.4675

2−4 5.3472× 10−2 1.1017 5.5856× 10−2 1.1252 7.2280× 10−2 1.2272

2−5 2.5794× 10−2 1.0517 2.6690× 10−2 1.0654 3.3603× 10−2 1.1050

Table 4.12: Convergence orders p at each fractional order α of Example 4.3

τ
α = 0.0001 α = 0.5 α = 0.9999

ei pi ei pi ei pi

2−1 4.1168× 10−2 - 4.0900× 10−2 - 4.0797× 10−2 -

2−2 1.7207× 10−2 1.2586 1.7083× 10−2 1.2596 1.6980× 10−2 1.2646

2−3 7.7528× 10−3 1.1502 7.6966× 10−3 1.1502 7.6357× 10−3 1.1530

2−4 3.6632× 10−3 1.0816 3.6370× 10−3 1.0815 3.6044× 10−3 1.0830

2−5 1.7783× 10−3 1.0426 1.7657× 10−3 1.0425 1.7489× 10−3 1.0433

67

(a) α = 0.0001 (b) α = 0.5 (c) α = 0.9999

Figure 4.4: Graphical convergence order p of Example 4.1

(a) α = 0.0001 (b) α = 0.5 (c) α = 0.9999

Figure 4.5: Graphical convergence order p of Example 4.2

(a) α = 0.0001 (b) α = 0.5 (c) α = 0.9999

Figure 4.6: Graphical convergence order p of Example 4.3

CHAPTER V

NONLINEAR POISSON EQUATION

In this chapter, we briefly account some physical meaning of Poisson-type equation.

Then, we construct a numerical algorithm for solving two-dimensional nonlinear Poisson

equation (1.3) over irregular domains by using the developed FIM-CPE in two-dimensional

spatial coordinates. Next, we test accuracy and efficiency of the obtained algorithm via

several examples for different irregular regions.

5.1 Poisson-Type Equation

Poisson equation is an elliptic PDE with broad utility in mechanical engineering

and theoretical physics. For instance, it arises to describe the potential field caused by

a given charge or mass density distribution. Then, one can compute the electrostatic or

gravitational field. The Poisson equation is a generalization of the Laplace’s equation,

which is also frequently seen in physics and it is written as

∇2u = f,

where ∇2 is the Laplace operator, f is given a real-valued function and u is an unknown

function to be sought. This Poisson equation has many applications, for examples;

• Newtonian gravity [52]: In the case of a gravitational field g due to an attracting

massive object of density ρ, the Gauss’s law for gravity in differential form can

be used to obtain the corresponding equation ∇ · g = −4πGρ, where G is the

gravitational constant. Since the gravitational field g is conservative, it can be

expressed in terms of a scalar potential ϕ, i.e., g = −∇ϕ. After substituting it into

the Gauss’s law, we yield the Poisson equation for gravity as ∇2ϕ = 4πGρ. Solving

this Poisson equation for the potential ϕ requires knowing the density ρ.

69

• Electrostatics [26]: Starting with the Gauss’s law for electricity in differential

form, one of the Maxwell’s equations, that is ∇ · D = ρ, where D is an electric

displacement field and ρ is charge density that brought from outside. Assuming that

the medium is linear, isotropic and homogeneous, we have the constitutive equation

D = εE, where ε is a permittivity of the medium and E is an electric field. After

substituting this into the Gauss’s law, we have ∇ · E = ρ
ε
. In electrostatic, we

assume that there is no magnetic field. Then, we obtain ∇ × E = 0. When the

curl of any gradient is zero, we can write the electric field E as the gradient of

a scalar function φ called the electric potential, i.e., E = −∇φ. Substituting the

potential gradient for the electric field, then this directly produces Poisson equation

for electrostatics, which is ∇2φ = − ρ
ε
. This Poisson equation can be solved to seek

the electric potential φ when the charge density ρ and the permittivity ε are known.

In addition, there are many other applications regarding the Poisson-type equation,

see [56] and references therein. However, in this dissertation, we study the generalized

two-dimensional nonlinear Poisson equation, that is, the lower-order derivatives ux, uy

and u are added on the left-hand side and the forcing term f is also considered to be a

nonlinear function in terms of u. Then, it is expressed as

∇2u+ α
∂u

∂x
+ β

∂u

∂y
+ γu = f(u),

where α, β and γ are given coefficient functions depending on the variables x and y,

respectively. In order to increase the attractiveness of this nonlinear Poisson equation, we

further consider it over an irregular two-dimensional domain. For the irregular domain

used in this work, it means any arbitrarily shaped regions in two-dimensional domains

which are the connected region without a hole with a closed boundary curve, except the

rectangular-shaped domain. The variety of irregular domains that we choose to study

in this work including the pentagonal, circular, L-shaped, butterfly, peanut-shaped and

elliptic regions as demonstrated the figures in Section 5.3. Let us devise a numerical

algorithm for estimating an approximate solution of the nonlinear Poisson-type equation

over irregular two-dimensional domains in the next section.

70

5.2 Algorithm for Solving Nonlinear Poisson Equation

In this section, we propose the numerical procedure based on our two-dimensional

developed FIM-CPE for finding approximate solutions of the two-dimensional nonlinear

Poisson-type equation (1.3) over an irregular domain. Now, we let u be an approximate

result of v in (1.3). Then, we consider the following steady state nonlinear Poisson-type

equation in two dimensions on irregular domain Ω

∇2u+ α(x, y)
∂u

∂x
+ β(x, y)

∂u

∂y
+ γ(x, y)u = f(x, y, u), (x, y) ∈ Ω (5.1)

subject to the Dirichlet boundary condition

u(x, y) = ψ(x, y), (x, y) ∈ ∂Ω, (5.2)

where ∇2 := ∂2

∂x2 + ∂2

∂y2 is the Laplace operator, α, β, γ and ψ are given the smooth

functions depending on the variables x and y, respectively. The function f is a nonlinear

in term of u, that u is an unknown function in terms of x and y to be sought over the

irregular domain Ω ⊆ R2, where Ω is a connected region with closed boundary curve ∂Ω.

Before we continue, let a, b, c, d ∈ R such that a < b and c < d. Assume that [a, b]× [c, d]

is the smallest rectangular region that covers the domain Ω along the horizontal and

vertical directions, respectively.

First, the technique of linearization is used to deal with the nonlinear term of (5.1)

in order to find the solution iteratively. Then, we obtain

∂2u⟨m⟩

∂x2
+
∂2u⟨m⟩

∂y2
+ α

∂u⟨m⟩

∂x
+ β

∂u⟨m⟩

∂y
+ γu⟨m⟩ = f(x, y, u⟨m−1⟩), (5.3)

where u⟨m⟩ is a numerical value in the mth iterations for m ∈ N. Next, applying the

developed FIM-CPE to eliminate all spatial derivatives from (5.3) by taking twice integrals

with respect to the variables x and y, respectively. Then, the differential equation (5.3) is

transformed into the equivalent integral equation and utilizing the technique of integration

71

by parts, it is the following form as

∫ y

c

∫ η2

c
u⟨m⟩(x, η1) dη1dη2 +

∫ x

a

∫ ξ2

a
u⟨m⟩(ξ1, y) dξ1dξ2

+

∫ y

c

∫ η2

c

∫ x

a

(
α(ξ2, η1)u

⟨m⟩(ξ2, η1)−
∫ ξ2

a

∂α

∂ξ1
(ξ1, η1)u

⟨m⟩(ξ1, η1) dξ1

)
dξ2dη1dη2

+

∫ y

c

∫ x

a

∫ ξ2

a

(
β(ξ1, η2)u

⟨m⟩(ξ1, η2)−
∫ η2

c

∂β

∂η1
(ξ1, η1)u

⟨m⟩(ξ1, η1) dη1

)
dξ1dξ2dη2

+

∫ y

c

∫ η2

c

∫ x

a

∫ ξ2

a
γ(ξ1, η1)u

⟨m⟩(ξ1, η1) dξ1dξ2dη1dη2 + xb1(y) + b2(y) + yd1(x) + d2(x)

=

∫ y

c

∫ η2

c

∫ x

a

∫ ξ2

a
f(ξ1, η1, u

⟨m−1⟩(ξ1, η1)) dξ1dξ2dη1dη2, (5.4)

where b1(y), b2(y), d1(x) and d2(x) are arbitrary functions emerged in the process of

integration. To handle with these unknown functions, the Chebyshev interpolation is

used to approximate them by

br(y) =

N−1∑
n=0

br,nRn(y) and dr(x) =

M−1∑
n=0

dr,nRn(x) (5.5)

for r ∈ {1, 2}, where {br,n}N−1
n=0 and {dr,n}M−1

n=0 are unknown values on these interpolated

points which will be determined according to the given boundary condition (5.2). Then,

we discretize both horizontal and vertical directions of the rectangular domain [a, b]×[c, d]

into M and N points, respectively, through the zeros of Chebyshev polynomials RM (x)

and RN (y), which are defined by X = {x1, x2, x3, . . . , xM} and Y = {y1, y2, y3, . . . , yN},

respectively. Therefore, the total number of grid points in global numbering system is

H :=MN nodes. We note that each node in the system obtains from an element in the

set of Cartesian product X × Y ordering as the global-type system, i.e., (xi, yi) ∈ X × Y

for i ∈ {1, 2, 3, . . . , H}. Next, we substitute each node (xi, yi) to (5.4) and transform it

into the matrix form by using the idea of developed FIM-CPE in two-dimensional spaces

described in Section 2.4.2. Then, we obtain

A2
yu⟨m⟩ + A2

xu⟨m⟩ + A2
yAx

(
αu⟨m⟩ − Axαxu⟨m⟩)+ AyA2

x

(
βu⟨m⟩ − Ayβyu⟨m⟩)

+A2
yA2

xγu⟨m⟩ + XΦyb1 +Φyb2 + YΦxd1 +Φxd2 = A2
yA2

xf⟨m−1⟩

72

or it can be simplified as

Ku⟨m⟩ + XΦyb1 +Φyb2 + YΦxd1 +Φxd2 = A2
yA2

xf⟨m−1⟩, (5.6)

where K := A2
y +A2

x +A2
yAxα−A2

yA2
xαx +AyA2

xβ−A2
yA2

xβy +A2
yA2

xγ, Ax and Ay

are defined in Remark 2.1. Other parameters contained in (5.6) and K are defined by

X = diag(x1, x2, x3, . . . , xH),

Y = diag(y1, y2, y3, . . . , yH),

α = diag(α1, α2, α3, . . . , αH) for αi = α(xi, yi),

β = diag(β1, β2, β3, . . . , βH) for βi = β(xi, yi),

γ = diag(γ1, γ2, γ3, . . . , γH) for γi = γ(xi, yi),

αx = diag(αx,1, αx,2, αx,3, . . . , αx,H) for αx,i = αx(xi, yi),

βy = diag(βy,1, βy,2, βy,3, . . . , βy,H) for βy,i = βy(xi, yi),

br =
[
br,0, br,1, br,2, . . . , br,N−1

]⊤ for r ∈ {1, 2},

dr =
[
dr,0, dr,1, dr,2, . . . , dr,M−1

]⊤ for r ∈ {1, 2},

u⟨m⟩ =
[
u
⟨m⟩
1 , u

⟨m⟩
2 , u

⟨m⟩
3 , . . . , u

⟨m⟩
H

]⊤ for u⟨·⟩i = u⟨·⟩(xi, yi),

f⟨m−1⟩ =
[
f
⟨m−1⟩
1 , f

⟨m−1⟩
2 , f

⟨m−1⟩
3 , . . . , f

⟨m−1⟩
H

]⊤ for f ⟨·⟩i = f(xi, yi, u
⟨·⟩
i).

From (5.5), we can obtain Φx and Φy, where

Φx =



R0(x1) R1(x1) · · · RM−1(x1)

R0(x2) R1(x2) · · · RM−1(x2)

...
...

R0(xH) R1(xH) · · · RM−1(xH)


and

Φy =



R0(y1) R1(y1) · · · RN−1(y1)

R0(y2) R1(y2) · · · RN−1(y2)

...
...

R0(yH) R1(yH) · · · RN−1(yH)


.

73

Next, for the given Dirichlet boundary condition (5.2), it can be transformed into

matrix equations by hiring the linear combination of Chebyshev polynomials (2.11) which

can be split into four cases as follows:

Left & Right boundary conditions: For y being fixed, we consider

u⟨m⟩(x, y) =

M−1∑
n=0

c⟨m⟩
n Rn(x) := zM (x)R−1

M u⟨m⟩(·, y) = ψ(x, y) (5.7)

where zM (x) = [R0(x), R1(x), R2(x), . . . , RM−1(x)]. As we vary the fixed variable y ∈

{y1, y2, y3, . . . , yN} which is meshed by the zeros of RN (y). For h ∈ {1, 2, 3, . . . , N}, we

consider the nodal points (xlh, yh) and (xrh, yh) which are the corresponding left and right

vertical projections along all points of the zeros yh, respectively, on the boundary region

Ω, see Figures 5.1(a) and 5.1(b). Then, we can express (5.7) to the left (µ = l) or right

(µ = r) boundary condition in the matrix form by



zM (xµ1)R−1
M 0 · · · 0

0 zM (xµ2)R−1
M

.
... 0

0 · · · 0 zM (xµN)R−1
M





u⟨m⟩(·, y1)

u⟨m⟩(·, y2)
...

u⟨m⟩(·, yN)


=



ψ(xµ1 , y1)

ψ(xµ2 , y2)

...

ψ(xµN , yN)


,

which denoted by Zµu⟨m⟩ = Ψµ, where Zµ = diag
(
zM (xµ1), zM (xµ2), . . . , zM (xµN)

)
⊗R−1

M

for µ ∈ {l, r}. Then, to be specific, we denote the above boundary condition which

corresponds to the left- and right-hand sides of the rectangular domain [a, b] × [c, d] by

Zlu⟨m⟩ = Ψl and Zru⟨m⟩ = Ψr, respectively.

Bottom & Top boundary conditions: For x being fixed, we consider

u⟨m⟩(x, y) =

N−1∑
n=0

c⟨m⟩
n Rn(y) := zN (y)R−1

N u⟨m⟩(x, ·) = ψ(x, y), (5.8)

where zN (y) = [R0(y), R1(y), R2(y), . . . , RN−1(y)]. As we vary the fixed variable x ∈

{x1, x2, x3, . . . , xM} which is generated by the zeros of RM (x). For k ∈ {1, 2, 3, . . . ,M},

74

we can consider the nodal points (xk, ybk) and (xk, y
t
k) which are the corresponding bottom

and top horizontal projections along all zeros xk, respectively, on the boundary region Ω,

see Figures 5.1(c) and 5.1(d). Then, (5.8) can be expressed to the bottom (ν = b) or top

(ν = t) boundary condition in the matrix form by



zN (yν1)R−1
N 0 · · · 0

0 zN (yν2)R−1
N

.
... 0

0 · · · 0 zN (yνM)R−1
N





u⟨m⟩(x1, ·)

u⟨m⟩(x2, ·)
...

u⟨m⟩(xM , ·)


=



ψ(x1, y
ν
1)

ψ(x2, y
ν
2)

...

ψ(xM , y
ν
M)


,

which is denoted by Zνũ⟨m⟩ = Ψν or ordering the index as the global numbering system:

ZνP−1u⟨m⟩ = Ψν , where Zν = diag
(
zN (yν1), zN (yν2), . . . , zN (yνM)

)
⊗ R−1

N for ν ∈ {b, t}.

Therefore, to be specific, we denote the above boundary condition which corresponds to

the bottom and top sides of the rectangular domain [a, b] × [c, d] by ZbP−1u⟨m⟩ = Ψb

and ZtP−1u⟨m⟩ = Ψt, respectively.

(a) Left boundary condition (b) Right boundary condition

(c) Bottom boundary condition (d) Top boundary condition

Figure 5.1: Discretizing each side of boundary over [a, b]× [c, d]

75

Finally, we can construct the system of iterative linear equations for finding nu-

merical results of the nonlinear Poisson equation from (5.6) and four above-mentioned

boundary conditions. This linear system has the total number of MN + 2(M + N)

unknown variables including u⟨m⟩, b1, b2, d1 and d2 as follows:



K XΦy Φy YΦx Φx

Zl 0 0 · · · 0

Zr 0 0 · · · 0

ZbP−1
...

...

ZtP−1 0 0 · · · 0





u⟨m⟩

b1

b2

d1

d2


=



A2
xA2

yf⟨m−1⟩

Ψl

Ψr

Ψb

Ψt


. (5.9)

Consequently, the iterative approximate solutions u⟨m⟩ can be found by solving (5.9) in

conjunction with an arbitrary initial guess of the iteration u⟨0⟩ that makes f⟨0⟩ to be

available. Note that the stopping criterion for finding the mth iterative approximate

solution u⟨m⟩ is stopped when the mth error norm e⟨m⟩ := ∥u⟨m⟩ − u⟨m−1⟩∥ of difference

between the current and consecutively previous solutions is less than the given convergent

tolerance TOL. Therefore, an approximate solution u(x, y) at arbitrary point (x, y) ∈ Ω

can be estimated by using the transformation processes in the same way as (5.7) and

(5.8). Then, we have

u(x, y) = zN (y)R−1
N u⟨m⟩(x, ·)

= zN (y)R−1
N

(
IN ⊗ zM (x)R−1

M

)
u⟨m⟩

=
(
zN (y)R−1

N ⊗ zM (x)R−1
M

)
u⟨m⟩,

where u⟨m⟩ is the mth terminal solution in solving (5.9). In addition, we can consider the

convergent sequence
{

u⟨m⟩} from the iterative linear system (5.9) which is respectively

denoted by Hu⟨m⟩ = F
(
u⟨m−1⟩) or

u⟨m⟩ = G
(
u⟨m−1⟩), (5.10)

where G
(
u⟨m−1⟩) := H−1F

(
u⟨m−1⟩) and u⟨m⟩ also contains the unknowns b1, b2, d1

76

and d2. We can see that (5.10) is in the form of fixed-point iteration, where G is called

the iterative function. Let the exact solution u∗ be a fixed point of G, i.e., G(u∗) = u∗.

However, for considering the convergent sequence
{

u⟨m⟩} in this case, we assume that H

is invertible. Then, we discuss regarding the convergence via the following theorem.

Theorem 5.1. ([19]) Let D ⊂ Rn be closed and G : D → D. Assume that the mapping

G is a contraction on D, i.e., there exists λ < 1 such that

∥G(u)− G(v)∥ ≤ λ∥u − v∥, (5.11)

for all u,v ∈ D. Then, there exists unique u∗ ∈ D such that u∗ = G(u∗) and the

fixed-point iterations converge to u∗ for any choice of u⟨0⟩ ∈ D.

Theorem 5.2. ([19]) Let D ⊂ Rn be closed and G : D → D have continuous partial

derivatives in D. Assume that there exists λ < 1 such that the natural norm of Jacobian

matrix ∥∇G(u)∥ < λ, for all u ∈ D. Then, G is a contraction in D and satisfies (5.11).

Therefore, the existence and uniqueness of the fixed-point iteration (5.10) can be

described by using Theorems 5.1 and 5.2. In verification, we have to construct the domain

D ⊆ RMN+2(M+N). If the iterative function G for (5.10) is the contraction and maps D

into D, it has a fixed point in the domain D. Furthermore, if we can show that there exists

a constant λ < 1 such that for some natural matrix norm of the Jacobian, ∥∇G(u)∥ < λ

for all u ∈ D, then G has a unique fixed point u∗ in D, and the fixed-point iteration is

guaranteed to converge to u∗ for any initial guess chosen in D. However, the aim of this

dissertation is to construct numerical procedures for solving nonlinear PDEs. Thus, we

do not provide theoretical verifications concerning fixed point for each example presented

at the end of this chapter.

Moreover, we can also observe a convergence speed for the iterative method (5.9)

by considering the following definition.

77

Definition 5.1. ([19]) The sequence
(
u⟨m⟩) converges with order p to the solution u∗ if

lim
m→∞

∥u⟨m+1⟩ − u∗∥
∥u⟨m⟩ − u∗∥p

≤ µ

for some positive constant µ and p ≥ 1. Here, p is always called the order of convergence.

Obviously, the larger p and the smaller µ, they can affect the more quickly the sequence

converges. In particular, convergence with order

• p = 1 and µ < 1 is called linear convergence with rate of convergence µ,

• p = 2 and µ > 0 is called quadratic convergence,

• p = 3 and µ > 0 is called cubic convergence.

Usually, we scarcely know the analytical solution u∗, however, a practical method

to calculate the order of convergence p for the sequence (u⟨m⟩) can be approximated from

Definition 5.1 which its expression may be better understood when it is interpreted as∥∥u⟨m+1⟩ − u⟨m⟩∥∥ = µ
∥∥u⟨m⟩ − u⟨m−1⟩∥∥p. The first way to compute the order of conver-

gence p, we take the natural logarithm function ln on both sides of this equation. Then,

we have

ln
∥∥∥u⟨m+1⟩ − u⟨m⟩

∥∥∥ = p ln
∥∥∥u⟨m⟩ − u⟨m−1⟩

∥∥∥+ lnµ (5.12)

or simplified form: ln e⟨m+1⟩ = p ln e⟨m⟩ + lnµ. We can see that this is a linear equation,

where ln e⟨m⟩ vs ln e⟨m+1⟩ are corresponding with the variables x vs y in the Cartesian

coordinate, respectively. Therefore, the order of convergence p is a slope in plotting linear

graph between ln e⟨m⟩ vs ln e⟨m+1⟩.

Another way is to eliminate lnµ by constructing two consecutive linear equations

from (5.12). Next, we subtract both linear equations together, the term lnµ is then

removed. After that we rearrange the subtracted equation, we finally get the equation for

estimating the order of convergence p which is converging to

p ≈
ln
∥∥u⟨m+1⟩ − u⟨m⟩∥∥− ln

∥∥u⟨m⟩ − u⟨m−1⟩∥∥
ln
∥∥u⟨m⟩ − u⟨m−1⟩

∥∥− ln
∥∥u⟨m−1⟩ − u⟨m−2⟩

∥∥ =
ln
(
e⟨m+1⟩/e⟨m⟩)

ln
(
e⟨m⟩/e⟨m−1⟩

) .

78

For computational convenience, we provide the following algorithm in the form of

pseudocode for finding an approximate solution of the two-dimensional nonlinear Poisson

equation over the irregular domains by using our developed FIM-CPE.

Algorithm 3 Algorithm for solving nonlinear Poisson equation by the FIM-CPE

Input: a, b, c, d, α, β, γ, ψ, f , M , N , TOL and u⟨0⟩;

Output: An approximate solution u(x, y);

1: Set xk = 1
2

[
(b− a) cos

(
2k−1
2M π

)
+ a+ b

]
for k ∈ {1, 2, 3, . . . ,M} in descending order;

2: Set yh = 1
2

[
(d− c) cos

(
2h−1
2N π

)
+ c+ d

]
for h ∈ {1, 2, 3, . . . , N} in descending order;

3: Calculate the total number of grid points H =M ×N ;

4: Construct xi and yi in the global numbering system for i ∈ {1, 2, 3, . . . ,H};

5: Compute K, X, Y, P, Φx, Φy, Ax, Ay, Zl, Zr, Zb, Zt, Ψl, Ψr, Ψb and Ψt;

6: Set m = 1;

7: do

8: Compute f⟨m−1⟩ =
[
f
⟨m−1⟩
1 , f

⟨m−1⟩
2 , f

⟨m−1⟩
3 , . . . , f

⟨m−1⟩
H

]⊤;

9: Find u⟨m⟩ by solving the iterative linear system (5.9);

10: Compute e⟨m⟩ = ∥u⟨m⟩ − u⟨m−1⟩∥;

11: Update m = m+ 1;

12: while e⟨m−1⟩ ≥ TOL

13: return u(x, y) =
(
zN (y)R−1

N ⊗ zM (x)R−1
M

)
u⟨m⟩;

5.3 Numerical Examples for Testing Algorithm 3

In this section, we show the efficiency and effectiveness of our constructed Algorithm

3 through seven numerical examples for Poisson-type problems over irregular-shaped do-

mains, including pentagonal, circular, L-shaped, butterfly, peanut-shaped and elliptic

regions. Moreover, we display the comparisons between analytical solution u∗ and nu-

merical solution u measured by the MAE = 1
H

∑H
i=1 |u∗(xi, yi)− u(xi, yi)|, together with

iterative numbers m and CPU time(s) in order to demonstrate the computational cost.

We further express the order and rate of convergences of Algorithm 3 via plotting graphs.

Finally, we also depict a plotting of numerical result in three-dimensional diagram.

79

Example 5.1. Consider the nonlinear Poisson-type equation in [31] over the pentagonal

domain Ω as shown in Figure 5.3(a) as follows.

∇2u+ u2 = e2x cos2 y, (x, y) ∈ Ω, (5.13)

with the Dirichlet boundary condition corresponds to the analytical solution u∗(x, y) =

ex cos y. When our proposed Algorithm 3 is employed to solve this problem, (5.13) can be

transformed into the matrix form (5.6), where K = A2
y+A2

x and each element of f⟨m−1⟩ is

f
⟨m−1⟩
i = e2xi cos2 yi−(u

⟨m−1⟩
i)2 for i ∈ {1, 2, 3, . . . , H}. The initial guess of iteration u⟨0⟩

is chosen to be the zero vector. To test the accuracy of our method, we perform by varying

the convergent tolerances which are taken as TOL = 10−n for n ∈ {1, 2, 3, 4, 5} under the

discretizing domain M = N , namely, the nodal points H ∈ {10 × 10, 12 × 12, 14 × 14}

that demonstrates the MAE in Table 5.1 with their numbers of iteration m and CPU

time(s). Moreover, we also find the order and rate of convergences via plotting graphs

in Figures 5.2(a) and 5.2(b), respectively, for the discretizing grid numbers H = 10× 10

and the convergent tolerance TOL = 10−10. However, their convergences produce the

order p = 0.9916 ≈ 1 and the rate µ = 0.3838. Therefore, a consequence of the proposed

Algorithm 3 converges with a linear order and a quick rate because µ quite approaches to

the zero side. Finally, we plot the three-dimensional graph of our approximate solutions

as depicted in Figure 5.3(b).

Table 5.1: MAE for each discretizing H at different tolerances of Example 5.1

TOL
H = 10 × 10 H = 12 × 12 H = 14 × 14

m MAE Time(s) m MAE Time(s) m MAE Time(s)

10−1 5 1.0397× 10−3 0.3661 6 3.8033× 10−4 0.4826 7 1.5128× 10−4 0.5812

10−2 7 1.5311× 10−4 0.4016 9 2.1407× 10−5 0.5445 10 8.5425× 10−6 0.6547

10−3 10 8.6638× 10−6 0.4429 11 3.1447× 10−6 0.5762 12 1.2571× 10−6 0.7324

10−4 12 1.2771× 10−6 0.4691 14 1.7704× 10−7 0.5866 15 7.1399× 10−8 0.8144

10−5 14 1.8822× 10−7 0.4854 16 2.6015× 10−8 0.6273 17 1.1618× 10−8 0.9071

80

(a) Order of convergence (b) Rate of convergence

Figure 5.2: Order and rate of convergences of Example 5.1

(a) Pentagonal domain Ω (b) Graphical solution u

Figure 5.3: Pentagonal domain and numerical solution of Example 5.1

Example 5.2. Consider the nonlinear Poisson-type equation as in [6] over the circular

domain as Figure 5.5(a) as follows.

−∇2u = eu + β(x, y) in x2 + y2 ≤ 1, (5.14)

u = 0 on x2 + y2 = 1,

where β(x, y) is chosen corresponding to the exact solution is u∗(x, y) = (1−x2−y2)ex cos y.

Our presented numerical Algorithm 3 is used to find the approximate solution of (5.14),

where K = −A2
y − A2

x and each component of f⟨m−1⟩ is the right-hand-side term of

81

(5.14). The initial guess of iteration u⟨0⟩ is selected to be the unit-element vector. The

accuracies of our method for each convergent tolerance TOL = 10−n for n ∈ {1, 2, 3, 4, 5}

and the computational points by H ∈ {10 × 12, 12 × 14, 14 × 16} are shown in Table

5.2 together with their numbers of iteration m and CPU time(s). We further obtain

the convergent order p = 0.9991 ≈ 1 and convergent rate µ = 0.4180 as demonstrated

in Figures 5.4(a) and 5.4(b), respectively, for the parameters discretizing grid numbers

H = 10 × 10 and the convergent tolerance TOL = 10−10. We can see that the rate of

convergence µ quite approaches to the zero side, hence it quickly converges to the exact

solution. Moreover, we also display the behavior of our approximate solutions via the

plotting of three-dimensional graph in Figure 5.5(b).

Table 5.2: MAE for each discretizing H at different tolerances of Example 5.2

TOL
H = 10 × 12 H = 12 × 14 H = 14 × 16

m MAE Time(s) m MAE Time(s) m MAE Time(s)

10−1 4 3.2425× 10−3 0.3447 4 3.2411× 10−3 0.3786 4 3.2401× 10−3 0.4149

10−2 6 5.6464× 10−4 0.3643 7 2.3565× 10−4 0.4075 7 2.3558× 10−4 0.4603

10−3 9 4.1090× 10−5 0.4078 9 4.1072× 10−5 0.4469 9 4.1060× 10−5 0.5272

10−4 12 2.9894× 10−6 0.4281 12 2.9878× 10−6 0.4946 12 2.9869× 10−6 0.6003

10−5 14 5.2207× 10−7 0.4317 14 5.2064× 10−7 0.5321 15 2.1727× 10−7 0.6628

(a) Order of convergence (b) Rate of convergence

Figure 5.4: Order and rate of convergences of Example 5.2

82

(a) Circular domain Ω (b) Graphical solution u

Figure 5.5: Circular domain and numerical solution of Example 5.2

We can see that two previous examples, considered also in [31] and [6], contain

only one term of Laplace operator. Therefore, the next two examples, we construct the

nonlinear Poisson-type equations in fully form based on (5.1) by modifying from the linear

Poisson-type problems in [41] and [31] which are added the nonlinear forcing terms with

constant and variable coefficients for Examples 5.3 and 5.4, respectively, in order to verify

the performance of our numerical Algorithm 3.

Example 5.3. Consider the modified nonlinear Poisson equation obtained [41] on the

L-shaped domain Ω shown in Figure 5.7(a) with the constant coefficients as follows.

∇2u+4ux+4uy+2u = 4 cos(x+y)+ 2u

sin2 u+ 1
− 4 cosx sin y
3− cos(2 cosx sin y) , (x, y) ∈ Ω, (5.15)

with the Dirichlet boundary condition corresponds to exact solution u∗(x, y) = cosx sin y.

Then, we use our improved Algorithm 3 to solve the problem (5.15), which can be written

in the matrix form (5.6), where K = A2
y + A2

x + 4AxA2
y + 4A2

xAy + 2A2
xA2

y and each

component of f⟨m−1⟩ is explicitly the right-hand-side term of (5.15). The initial guess u⟨0⟩

is chosen to be the zero vector. We test the effectiveness and efficiency of our method by

selecting the convergent tolerance TOL = 10−n for n ∈ {1, 2, 3, 4, 5} under the meshing

domain M = N , that is H ∈ {11×11, 13×13, 15×15} as shown in Table 5.3 together with

their iterative numbers m and CPU time(s). We further obtain the order p = 0.9876 ≈ 1

and rate µ = 0.0620 of convergences as shown in Figures 5.6(a) and 5.6(b), respectively,

83

for parameters H = 11× 11 and TOL = 10−10. We can see that the rate of convergence

µ approaches to the zero side. Hence, it very quickly converges to the solution. Finally,

the three-dimensional graph of the numerical solution is also plotted in Figure 5.7(b).

Table 5.3: MAE for each discretizing H at different tolerances of Example 5.3

TOL
H = 11 × 11 H = 13 × 13 H = 15 × 15

m MAE Time(s) m MAE Time(s) m MAE Time(s)

10−1 4 1.8951× 10−5 0.3396 5 1.4978× 10−6 0.3782 5 9.8880× 10−7 0.4295

10−2 5 1.3980× 10−6 0.3458 6 1.0862× 10−7 0.3910 6 6.3262× 10−8 0.4479

10−3 6 1.0183× 10−7 0.3519 7 7.8660× 10−9 0.4093 7 4.0312× 10−9 0.4608

10−4 7 7.3534× 10−9 0.3654 8 5.6536× 10−10 0.4107 8 2.5461× 10−10 0.4876

10−5 7 7.3534× 10−9 0.3743 8 5.6536× 10−10 0.4180 9 1.6620× 10−11 0.5258

(a) Order of convergence (b) Rate of convergence

Figure 5.6: Order and rate of convergences of Example 5.3

(a) L-shaped domain Ω (b) Graphical solution u

Figure 5.7: L-shaped domain and numerical solution of Example 5.3

84

Example 5.4. Consider the modified nonlinear Poisson equation obtained from [31] with

the variable coefficients and nonlinear singular forcing term over the butterfly domain Ω

as shown in Figure 5.9(a) as follows.

∇2u+ x2ux − y2uy = 2u+ (x− y)u lnu in x4 − 4x2 + y2 ≤ 0, (5.16)

with the Dirichlet boundary condition corresponds to analytical solution u∗(x, y) = ex+y.

First, we can transform (5.16) into the matrix form of (5.6) by using the numerical

Algorithm 3, where K = A2
y + A2

x + AxA2
yX2 − 2A2

xA2
yX − A2

xAyY2 + 2A2
xA2

yY and

each component of f⟨m−1⟩ is explicitly the right-hand-side term of (5.16). We notice that

the forcing term f is singular for u ≤ 0. Thus, the initial guess of the iteration u⟨0⟩ is

chosen to be the unit-element vector. Next, we show the performance of this method via

the convergent tolerance TOL = 10−n for n ∈ {1, 2, 3, 4, 5} under the discretizing domain

M ̸= N , namely, the computational nodes H ∈ {10 × 12, 12 × 14, 14 × 16} as shown

in Table 5.4 together with the numbers of iteration m and CPU time(s). We further

obtain the order of convergent p = 0.9962 ≈ 1 and rate of convergence µ = 0.7235 as

demonstrated in Figures 5.8(a) and 5.8(b), respectively, for the parameters discretizing

grid numbers H = 10 × 10 and the convergent tolerance TOL = 10−5. We can see

that the rate of convergence µ quite approaches to the one side, thus this Example 5.4

converges to the solution slower than the previous examples. Finally, we show the graph

of the numerical solution in three dimensions as Figure 5.9(b).

Table 5.4: MAE for each discretizing H at different tolerances of Example 5.4

TOL
H = 10 × 12 H = 12 × 14 H = 14 × 16

m MAE Time(s) m MAE Time(s) m MAE Time(s)

10−1 23 2.9980× 10−4 0.4883 32 5.1969× 10−5 0.7872 29 4.8389× 10−5 0.9561

10−2 30 2.2497× 10−5 0.5734 38 5.9046× 10−6 1.0168 35 5.8914× 10−6 1.0725

10−3 36 3.5654× 10−6 0.5943 45 4.6999× 10−7 1.0892 42 5.0498× 10−7 1.3126

10−4 42 2.0847× 10−6 0.6494 51 6.1648× 10−8 1.1168 48 6.1503× 10−8 1.4271

10−5 48 2.0620× 10−6 0.7452 57 2.1871× 10−8 1.5885 55 5.2418× 10−9 1.6056

85

(a) Order of convergence (b) Rate of convergence

Figure 5.8: Order and rate of convergences of Example 5.4

(a) Butterfly domain Ω (b) Graphical solution u

Figure 5.9: Butterfly domain and numerical solution of Example 5.4

From the four previous examples, we solved the two-dimensional nonlinear Poisson-

type equations over the numerous irregular domains, including the pentagonal, circular,

L-shaped and butterfly regions. They provide the high accurate solutions compared to

their analytical solutions in term of the MAE with small computational nodes. Next,

we consider the problems as presented in [54] and compare results obtained from our

Algorithm 3 and other methods on the complicated irregular domains such as the peanut-

shaped and elliptic regions in the polar coordinate form as follows.

86

Example 5.5. Consider the nonlinear Poisson equation given by [54] over the peanut-

shaped domain Ω as depicted in Figure 5.11(a) as follows.

∇2u = 4u3, (x, y) ∈ Ω, (5.17)

where Ω = {(θ, r) | r(θ) = 0.3

√
cos 2θ +

√
1.1− sin2 2θ, 0 ≤ θ ≤ 2π} with the Dirichlet

boundary condition corresponds to the analytical solution u∗(x, y) = 1
4+x+y . By our

proposed numerical Algorithm 3, (5.17) can be transformed into the matrix form (5.6),

where K = A2
y + A2

x and each component of f⟨m−1⟩ is f ⟨m−1⟩
i = 4

(
u
⟨m−1⟩
i

)3 for i ∈

{1, 2, 3, . . . ,H}. The iteratively initial guess u⟨0⟩ is chosen to be the zero vector. We

test the performance of our algorithm by comparing with the homotopy analysis method

(HAM), the fictitious time integration method (FTIM) and the dual reciprocity method

(DRM) which are reported in [60], [61] and [54], respectively. According to the HAM [60]

with grid point H = 11×11, their results are demonstrated that the best maximum error

of the 8th iterations is 1.24 × 10−10, while our Algorithm 3 gives 2.1561 × 10−11 using

merely 4 iterations. Next, the comparison of root mean square error (RMSE) between our

method with TOL = 10−5 and the FTIM [61] is shown in Table 5.5. Furthermore, Table

5.6 shows absolute maximal error (AME) and RMSE of our method with TOL = 10−2

and the DRM [54]. We also express the order of convergence p = 0.9979 ≈ 1 and the rate

of convergence µ = 0.0109 via plotting graph as shown in Figures 5.10(a) and 5.10(b),

respectively, for H = 5 × 5 and TOL = 10−15 at the initial guess u⟨0⟩ is unit-element

vector. This rate µ is very near the zero side, then it rapidly converges to the solution.

Finally, the graph of the numerical solution is depicted in Figure 5.11(b).

Table 5.5: RMSE for each discretizing H at TOL = 10−5 of Example 5.5

H
RMSE

m Time(s)
FTIM [61] Our Algorithm 3

4× 4 ≈ 1.0× 10−6 3.3928× 10−6 3 0.1474

8× 8 ≈ 1.0× 10−7 4.0990× 10−11 4 0.1622

10× 10 ≈ 1.0× 10−9 1.5483× 10−11 4 0.1756

87

Table 5.6: AME and RMSE for each discretizing H at TOL = 10−2 of Example 5.5

H
AME RMSE

DRM [54] Our Algorithm 3 DRM [54] Our Algorithm 3

10× 10 5.3× 10−7 9.7458× 10−9 1.6× 10−7 3.7660× 10−9

20× 20 3.3× 10−7 1.6809× 10−8 7.9× 10−8 4.4999× 10−9

30× 30 2.4× 10−8 9.0301× 10−10 7.3× 10−9 9.5182× 10−11

(a) Order of convergence (b) Rate of convergence

Figure 5.10: Order and rate of convergences of Example 5.5

(a) Peanut-shaped domain Ω (b) Graphical solution u

Figure 5.11: Peanut-shaped domain and numerical solution of Example 5.5

88

Example 5.6. Consider the nonlinear Poisson-type equation given by [54] on boundary

of the elliptic domain Ω as shown in Figure 5.13(a) as follows.

∇2u = u3 − 5

2
−
(
1− x2

4
− y2

)3

, (x, y) ∈ Ω, (5.18)

where Ω = {(x, y) x = 2 cos θ and y = sin θ, 0 ≤ θ ≤ 2π} with the Dirichlet boundary

condition corresponds to the analytical solution u∗(x, y) = 1− x2

4 −y2. We can transform

(5.18) into the matrix form (5.6), where K = A2
y+A2

x and each entry of f⟨m−1⟩ is explicitly

the right-hand-side term of (5.18). The initial guess of the iteration u⟨0⟩ is selected to be

the zero vector. Next, we compare the absolute error obtained from our developed method

with TOL = 10−5 to the asymptotic numerical method combined with the method of

fundamental solution (ANM-MFS) with the thin plate splines RBFs (TPS-RBF) and the

multiquadric RBFs (MQ-RBF) in [59] and the DRM in [54] as demonstrated in Table

5.7. Additionally, we can illustrate the order of convergence p = 0.9996 ≈ 1 in Figure

5.12(a) and the rate of convergence µ = 0.5728 in Figure 5.12(b) for the discretizing

grid number H = 10 × 10 and the convergent tolerance TOL = 10−10. We can see that

the convergence rate of µ is approximately the middle between zero and one. Thus, it

approaches to the exact solution with an acceptable rate Finally, we show the graph of

the numerical solution in Figure 5.13(b).

Table 5.7: Absolute error at different points (x, y) of Example 5.6

(x, y)
ANM-MFS [59] DRM [54] Our Algorithm 3

TPS-RBF MQ-RBF H = 5 × 5 H = 10 × 10 H = 5 × 5 H = 10 × 10

(1.5, 0.00) 3.9430× 10−3 3.3290× 10−3 3.0× 10−6 3.0× 10−6 3.6917× 10−7 1.7089× 10−7

(0.0, 0.45) 6.9580× 10−3 5.8120× 10−3 8.4× 10−5 1.7× 10−5 1.5027× 10−6 8.0096× 10−7

(0.6, 0.45) 1.8275× 10−2 1.5634× 10−2 2.5× 10−5 2.0× 10−6 1.2122× 10−6 5.9233× 10−7

(1.2, 0.35) 2.2270× 10−3 1.4760× 10−3 6.8× 10−5 9.0× 10−6 6.3852× 10−7 2.6843× 10−7

(0.9, 0.00) 5.4930× 10−3 4.4580× 10−3 9.3× 10−5 1.0× 10−6 1.2987× 10−6 6.0220× 10−7

89

(a) Order of convergence (b) Rate of convergence

Figure 5.12: Order and rate of convergences of Example 5.6

(a) Elliptic domain Ω (b) Graphical solution u

Figure 5.13: Elliptic domain and numerical solution of Example 5.6

In fact, our procedure of Algorithm 3 can be performed not only the presented

Poisson-type equation (5.1) with nonlinear forcing term f(x, y, u), but it is also can carry

out in the more general nonlinear Poisson-type equation that the physical field u is gov-

erned by ∇2u = F (x, y, u, ux, uy, uxx, uxy, uyy). However, because F can be any type of

nonlinear functions, it is impossible to write one procedure to fit all kinds of F . Thus, to

illustrate our idea, we choose one of the form shown in Example 5.7. We devise the numer-

ical algorithm based on our idea of developed FIM-CPE for finding approximate solution

and show that our method can handle this kind of fully nonlinear problem effectively.

90

Example 5.7. Consider a fully nonlinear Poisson-type equation with nonlinear singular

forcing term on the elliptic domain Ω as shown in Figure 5.15(a) as follows.

∇2u+ uux − uuy − u =
(
x−1 − 1

)
u2 + ln

∣∣ux−1
∣∣− y in x2 − xy + y2 ≤ 1, (5.19)

where x ̸= 0 and the Dirichlet boundary conditions coincident to the analytical solution

u∗(x, y) = xey. Since we know that uux = (u
2

2)x and uuy = (u
2

2)y. The linearization

process can be adapted to (5.19), by letting the left-hand-side term to be

u⟨m⟩
xx + u⟨m⟩

yy +
(1
2
u⟨m−1⟩u⟨m⟩

)
x
−
(1
2
u⟨m−1⟩u⟨m⟩

)
y
− u⟨m⟩.

Thus, by hiring our numerical Algorithm 3 to solve this problem, we have (5.6), where

K = A2
y+A2

x+AxA2
yD−A2

xAyD−A2
xA2

y when D = 1
2diag(u⟨m−1⟩

1 , u
⟨m−1⟩
2 , . . . , u

⟨m−1⟩
H)

and each element of f⟨m−1⟩ is explicitly its right-hand-side term. Moreover, we can see

that the forcing term f is singular when u = 0. Hence, the selected initial guess u⟨0⟩ is the

unit-element vector. Then, we test the accuracy of the results by varying the tolerance

TOL = 10−n for n ∈ {1, 2, 3, 4, 5} under discretizing H ∈ {12 × 12, 14 × 14, 16 × 16}

as shown the MAE and CPU time(s) in Table 5.8. Furthermore, the convergent order

is p = 1.0003 ≈ 1 and the convergent rate is µ = 0.5274 as shown in Figure 5.14 for

parameters H = 10× 10 and TOL = 10−9. Also, we plot the three-dimensional graph of

numerical results in Figure 5.15(b).

Table 5.8: MAE for each discretizing H at different tolerances of Example 5.7

TOL
H = 12 × 12 H = 14 × 14 H = 16 × 16

m MAE Time(s) m MAE Time(s) m MAE Time(s)

10−1 8 1.3566× 10−3 0.3787 10 3.4830× 10−4 0.5661 40 1.5667× 10−7 1.7427

10−2 12 8.9169× 10−5 0.5022 11 2.9352× 10−5 0.5942 41 8.5052× 10−8 1.7507

10−3 15 1.1437× 10−5 0.5447 17 2.2632× 10−6 0.6943 43 2.6786× 10−8 1.7862

10−4 19 8.4218× 10−7 0.5856 21 2.0292× 10−7 0.7935 45 8.4077× 10−9 1.8478

10−5 22 1.1952× 10−7 0.6240 25 1.9052× 10−8 0.8312 46 4.7365× 10−9 1.8574

91

(a) Order of convergence (b) Rate of convergence

Figure 5.14: Order and rate of convergences of Example 5.7

(a) Elliptic domain Ω (b) Graphical solution u

Figure 5.15: Elliptic domain and numerical solution of Example 5.7

CHAPTER VI

CONCLUSIONS AND DISCUSSIONS

In this chapter, we summarize the overview and highlight of our works from each

previous chapter. Starting from the development of FIM via Chebyshev expansion. This

developed FIM is then utilized to handle nonlinear differential equations, that consist

of the Burgers’ equation with shock wave, the time-fractional BBMB equation and the

Poisson equation over irregular domains.

6.1 Conclusions

In this research, we begin to develop the traditional FIM by applying the Chebyshev

expansion in order to be applicable on arbitrary domains without any transformations as

demonstrated in Chapter 2. We have then mentioned about the advantages of choosing

Chebyshev expansion which interpolated by zeros of the Chebyshev polynomial of a cer-

tain degree. Subsequently, we have constructed the Chebyshev integration matrices both

one- and two-dimensional regions which are matrix representations of the integral opera-

tor. For the one-dimensional Chebyshev integration matrix, we achieve the relationship

that the number of integral layers is equal to the exponential number of Chebyshev inte-

gration matrix. For the two-dimensional Chebyshev integration matrices, we can express

their relationships via the Kronecker product as followed by Remark 2.1 for integrating

with respect to only one variable x or y and also Remark 2.2 for integrating with respect

to both variables x and y.

In Chapter 3, we utilize our developed FIM-CPE to devise the numerical algo-

rithm for solving one-dimensional nonlinear Burgers’ equation with a shock wave (3.1)

as demonstrated in Section 3.2. The presented Algorithm 1 can reduce the oscillations

and instabilities for small viscosity ν that can observe from the graphical behavior of

several numerical examples in Section 3.3. Moreover, we notice that Algorithm 1 can

93

overcome the problems that their analytical solutions involve an infinite series like Ex-

amples 3.1 and 3.2 which may converge very slowly for the small viscosity ν. Also, it can

perform with the problems that their initial conditions contain a kinematic viscosity like

Examples 3.3 and 3.4. Illustrative implementations for many experiments in Section 3.3

demonstrate that our Algorithm 1 outperforms the traditional FIM and other methods

in terms of accuracy under the same parameters and conditions. Finally, we find the

convergence order with respect to the time step τ of Algorithm 1 via Examples 3.1 - 3.4.

As a result, the convergence order is linearly order or O(τ). Afterward, we accelerate

the convergence speed of Algorithm 1 by applying the Crank-Nicolson method which pro-

vides quadratically convergence order or O(τ2). We also show the convergence order of

the accelerated procedure through the numerical experiments and plotting graphs which

they indeed provide the quadratically convergence order.

In Chapter 4, we extend the idea of solving the Burgers’ equation, that contains the

first-order derivative with respect to time, in order to study the BBMB equation (4.1),

that contains the fractional-order derivative with respect to time. Then, the numerical

Algorithm 2 was created for finding an approximate solution of the time-fractional BBMB

equation as displayed in Section 4.3. The definition of fractional-order derivative is used

in Caputo sense. The numerical examples demonstrate that our proposed Algorithm

2 produces a much higher accuracy than the CNLDS under the same parameters and

conditions for varying the discretized numbers of nodal points M , see Example 4.1. We

also notice from Examples 4.1, 4.2 and 4.3 that they provide more accuracy even when

we use a small number of nodal points M . Evidently, when we decrease the time step ∆t,

they furnish together more accurate results. In addition, our Algorithm 2 gives a good

performance on the fractional-order derivative α ∈ (0, 1) and actually it can be easily

applied to other nonlinear fractional PDEs. Finally, we seek the order of convergence

with respect to the time step τ of the proposed Algorithm 2 via all numerical Examples

4.1 - 4.3 together with the plotting graphs. As a consequence, the obtained convergence

order is linearly order or O(τ) and it is independent of the fractional order α. Also,

we can accelerate this Algorithm 2 to obtain the time complexity O(τ2) by using the

Crank-Nicolson method in the same way with Chapter 3.

94

In Chapter 5, we apply our two-dimensional developed FIM-CPE to construct the

numerical Algorithm 3 for seeking an approximate solution of two-dimensional nonlin-

ear Poisson-type equation (5.1) over various irregular domains, including the pentagonal,

circular, L-shaped, butterfly, peanut-shaped and elliptic domains. We demonstrate an

efficiency and effectiveness of our presented Algorithm 3 via several numerical examples

in Section 5.3. Moreover, we also express the order and rate of convergences for each

example. We can conclude that Algorithm 3 provide the linearly convergent order. The

rate of convergence obtained from each example is unequal which is the effect of nonlinear

forcing term f . From Theorem 5.2, we obviously know that λ is the convergence rate that

corresponds to ∥∇G(u)∥ < λ, but the iterative function G(u) := H−1F(u), where F is

constructed from the nonlinear forcing term f in each example. Thus, we can imply that

the rate of convergence depends on the nonlinear forcing term f . Especially, in the case

of the forcing term f is very complicated and fully nonlinear, it slowly converges to the

analytical solution. However, our Algorithm 3 provides the solution that converges to the

analytical solution for all above examples. Examples 5.1 and 5.2 contain only one term of

Laplace operator on the left-hand side. Examples 5.3 and 5.4 are in full form of (5.1) with

constant and variable coefficients, respectively. After implementing each example by Al-

gorithm 3, we can see that it gives a high accuracy of approximate result compared to the

analytical solution, although our Algorithm 3 uses a large convergent tolerance TOL and

it also rapidly converges to the solution by using a small number of iteration. Moreover,

we implement Examples 5.5 and 5.6 which are considered over the complicated domains

in polar coordinate form. They provide a much higher accuracy than other methods. We

further show that a fully nonlinear Poisson-type equation can be performed by Algorithm

3 and it still produces an accurate result. In fact, our procedure of Algorithm 3 can

be performed not only the presented Poisson-type equation (5.1) with nonlinear forcing

term, but it is also can carry out in the more general nonlinear Poisson-type equation

as shown in Example 5.7. However, we notice from these examples that sometimes we

cannot choose the same number of horizontal and vertical discretizations, simultaneously,

like Examples 5.2 and 5.4. This is because there may be some computational points on

the boundary that happen to be the same.

95

6.2 Future works

In this section, we provide the plan of future works that is the improvement and

modification of our developed FIM by using Chebyshev polynomial expansion to apply

with numerous interesting problems to other linear and nonlinear differential equations.

The lists of our future plan include the followings:

• Extend our developed FIM-CPE to the multi-dimensional domains and find its

general forms of Chebyshev integration matrices.

• Find the theoretical analysis of our proposed algorithms such as error estimation,

stability, rate of convergence and order of convergence.

• Adapt our proposed FIM-CPE to handle the problem that has a random variable

such as stochastic differential equations.

• Apply these presented algorithms for solving other nonlinear PDEs with some other

boundary conditions such as Neumann and Robin.

REFERENCES

[1] S. Abbasbandy and A. Shirzadi. The first integral method for modified Benjamin-Bona-

Mahony equation. Commun. Nonlinear. Sci. Numer. Simul., 15(7):1759–1764, 2010.

[2] A. Agila, D. Baleanu, R. Eid, and B. Irfanoglu. Applications of the extended fractional

Euler-Lagrange equations model to freely oscillating dynamical systems. Rom. J. Phys.,

61(3):350–359, 2016.

[3] H. Arzani and M. H. Afshar. Solving Poisson’s equations by the discrete least square

meshless method. WIT Trans. Model. Sim., 42:23–32, 2006.

[4] A. Asaithambi. Numerical solution of the Burgers’ equation by automatic differentiation.

Appl. Math. Comput., 216(9):2700–2708, 2010.

[5] E. Ashpazzadeh, B. Han, and M. Lakestani. Biorthogonal multiwavelets on the interval for

numerical solutions of Burgers’ equation. J. Comput. Appl. Math., 317:510–534, 2017.

[6] K. Atkinson and O. Hansen. Solving the nonlinear Poisson equation on the unit disk. J.

Integral Equ. Appl., 17(3):223–241, 2005.

[7] H. Bateman. Some recent researches on the motion of fluids. Mon. Weather Rev., 43:163–

170, 1915.

[8] O. A. Bauchau. Dymore User’s Manual Chebyshev Polynomials. Georgia Institute of

Technology, Atlanta, USA, 2007.

[9] T. B. Benjamin, J. L. Bona, and J. J. Mahony. Model equation for long waves in nonlinear

dispersive systems. Philos. Trans. R. Soc. Lond. A, 272(1220):47–78, 1972.

[10] E. R. Benton and G. W. Platzman. A table of solutions of the one-dimensional Burgers’

equations. Q. Appl. Math., 30(2):195–212, 1972.

[11] M. P. Bonkile, A. Awasthi, C. Lakshmi, V. Mukundan, and V. S. Aswin. A systematic

literature review of Burgers’ equation with recent advances. Pramana J. Phys., 90(69):

1–21, 2018.

[12] R. Boonklurb, A. Duangpan, and P. Gugaew. Numerical solution of direct and inverse

problems for time-dependent Volterra integro-differential equation using finite integration

method with shifted Chebyshev polynomials. Symmetry, 12(4):1–19, 2020.

97

[13] R. Boonklurb, A. Duangpan, and A. Saengsiritongchai. Finite integration method via

Chebyshev polynomial expansion for solving 2-D linear time-dependent and linear space-

fractional differential equations. Thai J. Math. (AMM 2019), pages 103–131, 2020.

[14] R. Boonklurb, A. Duangpan, and T. Treeyaprasert. Modified finite integration method

using Chebyshev polynomial for solving linear differential equations. J. Numer. Ind. Appl.

Math., 12(3–4):1–19, 2018.

[15] J. M. Burgers. A mathematical model illustrating the theory of turbulence. Adv. Appl.

Mech., 1:171–199, 1948.

[16] J. D. Cole. On a quasi-linear parabolic equations occurring in aerodynamics. Q. Appl.

Math., 9(3):225–236, 1951.

[17] A. Dogan. A Galerkin finite element approach to Burgers’ equation. Appl. Math. Comput.,

157(2):331–346, 2004.

[18] A. Esen and O. Tasbozan. Numerical solution of time fractional Burgers equation. Acta

Univ. Sapientiae Math., 7(2):167–185, 2015.

[19] C.-E. Fröberg. Numerical Mathematics, Theory and Computer Applications. Benjamin &

Cummings, Inc., California, USA, 1985.

[20] C. G. Gal, C. Gal, and M. Warma. Fractional-in-time semilinear parabolic equations and

applications, 2019. https://hal.archives-ouvertes.fr/hal-02061144.

[21] I. Ganaie and V. Kukreja. Numerical solution of Burgers’ equation by cubic Hermite

collocation method. Appl. Math. Comput., 237(15):571–581, 2014.

[22] A. Gil, J. Segura, and N. M. Temme. Numerical Methods for Special Functions. Society for

Industrial and Applied Mathematics, Philadelphia, USA, 2007.

[23] S. Harris. Sonic shocks governed by the modified Burgers’ equation. Eur. J. Appl. Math.,

7(2):201–222, 1996.

[24] W. L. Hosch. Navier-Stokes Equation. Encyclopædia Britannica, Inc., Scotland, USA, 2018.

[25] X. Hu, L. Mu, and X. Ye. A simple finite element method of the Cauchy problem for

Poisson equation. Int. J. Numer. Anal. Mod., 14(4–5):591–603, 2017.

[26] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, Inc., New York, USA, 1999.

[27] K. Kakuda and T. Nobuyoshi. The generalized boundary element approach to Burgers’

equation. Int. J. Numer. Method Eng., 29(2):245–261, 1990.

98

[28] J. J. Kasab, S. R. Karur, and P. A. Ramachandran. Quasilinear boundary element method

for nonlinear Poisson type problems. Eng. Anal. Bound. Elem., 15(3):277–282, 1995.

[29] N. A. Khan, A. Ara, and A. Mahmood. Numerical solutions of time-fractional Burger

equations: a comparison between generalized differential transformation technique and ho-

motopy perturbation method. Int. J. Numer. Method H., 22(2):175–193, 2015.

[30] C. I. Kondo and C. M. Webler. The generalized BBMB equations: convergence results for

conservation law with discontinuous flux function. Appl. Anal., 95(3):503–523, 2016.

[31] W. Kong and X. Wu. Chebyshev tau matrix method for Poisson-type equations in irregular

domain. J. Comput. Appl. Math., 228(1):158–167, 2009.

[32] D. Kumar, J. Singh, and D. Baleanu. A fractional model of convective radial fins with

temperature-dependent thermal conductivity. Rom. J. Phys., 69(103):1–13, 2017.

[33] S. Kumar and D. Kumar. Fractional modelling for BBMB equation by using new homotopy

analysis transform method. J. Assoc. Arab Univ. Basic Appl. Sci., 16(1):16–20, 2014.

[34] S. Kutluay, A. Esen, and I. Dag. Numerical solutions of the Burgers’ equation by the

least-squares quadratic B-spline FEM. J. Comput. Appl. Math., 167(1):21–33, 2004.

[35] N. Laskin. Fractional Dynamics: Principles of Fractional Quantum Mechanics. TopQuark

Inc., Toronto, Canada, 2011.

[36] C. P. Li and Y. H. Wang. Numerical algorithm based on Adomian decomposition for

fractional differential equations. Comput. Math. Appl., 57(10):1672–1681, 2009.

[37] M. Li, C. S. Chen, Y. C. Hon, and P. H. Wen. Finite integration method for solving multi-

dimensional partial differential equations. Appl. Math. Model., 39(17):4979–4994, 2015.

[38] M. Li, Y. C. Hon, T. Korakianitis, and P. H. Wen. Finite integration method for nonlocal

elastic bar under static and dynamic loads. Eng. Anal. Bound. Elem., 37(5):842–849, 2013.

[39] M. Li, Z. L. Tian, Y. C. Hon, C. S. Chen, and P. H. Wen. Improved finite integration

method for partial differential equations. Eng. Anal. Bound. Elem., 64:230–236, 2016.

[40] Y. Li, M. Li, and Y. C. Hon. Improved finite integration method for multi-dimensional

nonlinear Burgers’ equation with shock wave. Neur. Par. Sci. Comput., 23:63–86, 2015.

[41] S. Liu, J. Li, L. Chen, Y. Guan, C. Zhang, F. Gao, and J. Lin. Solving 2D Poisson-type

equations using meshless SPH method. Results Phys., 13:1–8, 2019.

99

[42] J. D. Logan. An Introduction to Nonlinear Partial Differential Equations, Second Edition.

Wiley & Sons, Inc., New York, USA, 2008.

[43] J. C. Mason and D. C. Handscomb. Chebyshev Polynomials. Chapman and Hall/CRC,

New York, USA, 2002.

[44] R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a fractional

dynamics approach. Phys. Rep., 339(1):1–77, 2000.

[45] E. L. Miller. Predictor-Corrector Studies of Burgers’ Model of Turbulent Flow. University

of Delaware, Newark, DE, USA, 1966.

[46] R. C. Mittal and R. K. Jain. Numerical solutions of nonlinear Burgers’ equation with

modified cubic b-splines collocation method. Appl. Math. Comput., 218(15):7839–7855,

2012.

[47] R. C. Mittal and P. Singhal. Numerical solution of Burger’s equation. Commun. Numer.

Method Eng., 9(5):397–406, 1993.

[48] J. R. Nagel. Numerical solutions to Poisson equations using the finite-difference method.

IEEE Antenn. Propag. Mag., 56(4):209–224, 2014.

[49] H. Nguyen and J. Reynen. A space-time finite element approach to Burgers’ equation.

Numer. Method Nonlinear Probl., 2:718–728, 1982.

[50] K. B. Oldham and J. Spanier. The Fractional Calculus: Theory and Applications of Dif-

ferentiation and Integration to Arbitrary Order. Academic Press, Inc., New York, 1974.

[51] I. Podlubny. Fractional Differential Equations. Academic Press, San Diego, USA, 1998.

[52] E. Poisson and C. M. Will. Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge

University Press, UK, 2014.

[53] K. Rahman, N. Helil, and R. Yimin. Some new semi-implicit finite difference schemes for

numerical solution of Burgers’ equation. IEEE (ICCASM 2010), pages 451–455, 2010.

[54] S. Y. Reutskiy. Method of particular solutions for nonlinear Poisson-type equations in

irregular domains. Eng. Anal. Bound. Elem., 37(2):401–408, 2013.

[55] T. J. Rivlin. Chebyshev Polynomials: from Approximation Theory to Algebra and Number

Theory. Dover Publications, Inc., New York, USA, 2020.

[56] A. P. S. Selvadurai. Partial Differential Equations in Mechanics 2. Springer, Berlin, Hei-

delberg, Germany, 2000.

100

[57] X. Shen and A. Zhu. A Crank-Nicolson linear difference scheme for a BBM equation with

a time fractional nonlocal viscous term. Adv. Differ. Equ., 2018(351):1–12, 2018.

[58] N. Su, J. P. C. Watt, K. W. Vincent, M. E. Close, and R. Mao. Analysis of turbulent flow

patterns of soil water under field conditions using Burgers equation and porous suction-cup

samplers. Aust. J. Soil Res., 42(1):9–16, 2004.

[59] A. Tri, H. Zahrouni, and M. P. Ferry. Perturbation technique and method of fundamental

solution to solve nonlinear Poisson problem. Eng. Anal. Bound. Elem., 35(3):273–278, 2011.

[60] C. C. Tsai. Homotopy method of fundamental solutions for solving certain nonlinear partial

differential equations. Eng. Anal. Bound. Elem., 36(8):1226–1234, 2012.

[61] C. C. Tsai, C. S. Liu, and W. C. Yeih. Fictitious, time integration method of fundamental

solutions with Chebyshev polynomials for solving Poisson-type nonlinear PDEs. Comput.

Model. Eng. Sci., 56(2):131–151, 2010.

[62] E. Varoḡlu and W. D. L. Finn. Space‐time finite elements incorporating characteristics for

the Burgers’ equation. Int. J. Numer. Method Eng., 16(1):171–184, 1980.

[63] P. H. Wen, Y. C. Hon, M. Li, and T. Korakianitis. Finite integration method for partial

differential equations. Appl. Math. Model., 37(24):10092–10106, 2013.

[64] W. L. Wood. An exact solution for Burgers’ equation. Commun. Numer. Meth. Eng., 22(7):

797–798, 2006.

[65] M. Xu, R. H. Wang, J. H. Zhang, and Q. Fang. A novel numerical scheme for solving

Burgers’ equation. Appl. Math. Comput., 217(9):4473–4482, 2011.

[66] X. J. Yang, F. Gao, and H. M. Srivastava. New rheological models within local fractional

derivative. Rom. J. Phys., 69(3):1–12, 2017.

[67] S. Yildirim. Exact and numerical solutions of Poisson equation for electrostatic potential

problems. Math. Probl. Eng., 2008(2):1–11, 2008.

[68] Y. Yu, D. Xu, and Y. C. Hon. Reconstruction of inaccessible boundary value in a side-

ways parabolic problem with variable coefficients-forward collocation with finite integration

method. Eng. Anal. Bound. Elem., 61:78–90, 2015.

[69] M. R. Yulita, M. S. M. Nooran, and I. Hashim. Variational iteration method for fractional

heat- and wave-like equations. Nonlinear Anal. Real World Appl., 10(3):1854–1869, 2009.

101

[70] D. F. Yun, Z. H. Wen, and Y. C. Hon. Adaptive least squares finite integration method for

higher-dimensional singular perturbation problems with multiple boundary layers. Appl.

Math. Comput., 271:232–250, 2015.

[71] M. Zarebnia and R. Parvaz. Numerical study of benjamin-bona-mahony-burgers equation.

Bol. Soc. Parana. Mat., 35(1):127–138, 2017.

[72] H. Zhang and F. Ding. On the kronecker products and their applications. J. Appl. Math.,

2013:1–8, 2013.

[73] J.-R. E. Zhang, Z. Wei, L. Yong, and Y. Xiao. Analytical solution for the time fractional

BBMB equation using modified residual power series method. Complexity, 2018:1–11, 2018.

APPENDICES

103

APPENDIX A : Some example of MatLab code for solving one-dimensional nonlinear

Burgers’ equation with shock wave. In this appendix, we demonstrate the MatLab code

of Example 3.1 based on the proposed numerical Algorithm 1. The command for solving

system of linear equations, we use the backslash command in MatLab solver.

1 %% -- Set parameters --

2 M = 80; % number of grid points

3 a = 0; % lower boundary

4 b = 1; % upper boundary

5 v = 0.01; % kinematic viscosity

6 x = 0.25; % a point that solution is sought

7 T = 0.4; % terminal time

8 dt = 10^-4; % time steps

9 u0 = @(x) sin(pi*x); % initial condition

10 ua = @(t) 0; % left boundary condition

11 ub = @(t) 0; % right boundary condition

12 %% -- Chebyshev integration matrix A --------------------------------

13 xk = flip(1/2*((b-a)*cos((2*(1:M)'-1)/(2*M)*pi)+a+b));

14 R(:,1) = ones(M,1);

15 R(:,2) = (2*xk-a-b)/(b-a);

16 for n = 2:M

17 R(:,n+1) = 2*(2*xk-a-b)/(b-a).*R(:,n)-R(:,n-1);

18 end

19 Rbar(:,1) = xk-a;

20 Rbar(:,2) = (xk-a).*(xk-b)/(b-a);

21 for n = 2:M-1

22 Rbar(:,n+1) = (b-a)/4*(R(:,n+2)/(n+1)-R(:,n)/(n-1)-2*(-1)^n/(n^2-1))

23 end

24 Rinv = 1/M*diag([1,repmat(2,1,M-1)])*R(:,1:M)';

25 A = Rbar*Rinv;

26 %% -- Boundary Conditions ---

27 hl = (-1).^(0:M-1);

28 hr = ones(1,M);

104

29 %% -- Construct matrix R' ---

30 n = repmat(0:M-1,M,1);

31 y = repmat((2*xk-a-b)/(b-a),1,M);

32 Rdif = 2/(b-a)*n.*sin(n.*acos(y))./sqrt(1-y.^2);

33 %% -- Approximate solution um ---------------------------------------

34 m = 1; % set initial iteration m

35 u = u0(xk); t(1) = dt; % initial solution and time

36 while t(m) <= T

37 Q = A*diag(u)-A^2*diag(Rdif*Rinv*u);

38 B11 = A^2/dt+Q-v*eye(M);

39 B12 = [-xk -ones(M,1)];

40 B21 = [hl*Rinv; hr*Rinv];

41 B22 = zeros(2);

42 B = [B11 B12; B21 B22];

43 f = [A^2*u/dt; ua(t(m)); ub(t(m))];

44 U = pinv(B)*f;

45 u = U(1:M); % solution u at each time t(m)

46 m = m + 1; % update iteration m

47 t(m) = m*dt; % compute consecutive time t(m)

48 end

49 Rx = cos((0:M-1)*acos((2*x-a-b)/(b-a)));

50 um = Rx*Rinv*u % approximate solution u(x,T)

51 %% -- Exact solution ue ---

52 N = 1:10^6; % number of terms in summation

53 F = @(x,n) exp((cos(pi*x)-1)/(2*pi*v)).*cos(n*pi*x);

54 a0 = integral(@(x)F(x,0),0,1);

55 for n = 1:length(N)

56 an(n) = 2*integral(@(x)F(x,n),0,1);

57 end

58 s1 = sum(an.*exp(-N.^2*pi^2*v*T).*N.*sin(N*pi*x));

59 s2 = sum(an.*exp(-N.^2*pi^2*v*T).*cos(N*pi*x));

60 ue = 2*pi*v*s1/(a0+s2) % exact solution u(x,T)

61 er = abs(ue-um) % absolute error

105

APPENDIX B : Some example of MatLab code for solving one-dimensional nonlinear

BBMB equation. In this appendix, we illustrate the MatLab code of Example 4.2 based

on the presented numerical Algorithm 2. The command that uses to solve system of linear

equations, we easily choose the backslash command in MatLab software.

1 %% -- Set parameters --

2 M = 40; % number of grid points

3 L = 1; % upper boundary domain

4 T = 1; % terminal time T

5 x = 0.5; % a point that solution is sought

6 a = 0.9; % order of fractional time alpha

7 dt = 0.01; % time step

8 u0 = @(x) 0*x; % initial condition

9 ul = @(t) t^2; % left boundary condition

10 ur = @(t) exp(1)*t^2; % right boundary condition

11 f = @(x,t) 2*exp(x)*t^(2-a)/gamma(3-a)+t*exp(x).*(exp(x)*t^3+t-2);

12 %% -- Chebyshev integration matrix A --------------------------------

13 xk = flip(L/2*(cos((2*(1:M)'-1)/(2*M)*pi)+1));

14 R(:,1) = ones(M,1);

15 R(:,2) = 2*xk/L-1;

16 for n = 2:M

17 R(:,n+1) = 2*(2*xk/L-1).*R(:,n)-R(:,n-1);

18 end

19 Rbar(:,1) = xk;

20 Rbar(:,2) = xk.^2/L-xk;

21 for n = 2:M-1

22 Rbar(:,n+1) = L/4*(R(:,n+2)/(n+1)-R(:,n)/(n-1)-2*(-1)^n/(n^2-1));

23 end

24 Rinv = 1/M*diag([1,repmat(2,1,M-1)])*R(:,1:M)';

25 A = Rbar*Rinv;

26 %% -- Boundary Conditions ---

27 hl = (-1).^(0:M-1);

28 hr = ones(1,M);

106

29 %% -- Construct matrix R' ---

30 n = repmat(0:M-1,M,1);

31 y = repmat(2*xk/L-1,1,M);

32 Rdif = 2/L*n.*sin(n.*acos(y))./sqrt(1-y.^2);

33 %% -- Approximate solution um ---------------------------------------

34 m = 1; % set initial iteration m

35 t(1) = dt; % starting time t(1)

36 u(:,1) = u0(xk); % initial solution u0

37 w0 = dt^(-a)/gamma(2-a);

38 while t(m) <= T

39 s = 0;

40 for j = 1:m-1

41 w = dt^-a/gamma(2-a)*((j+1)^(1-a)-j^(1-a));

42 s = s + w*A^2*(u(:,m-j+1)-u(:,m-j));

43 end

44 K1 = w0*A^2-eye(M)/dt+A+A*diag(u(:,m))-A^2*diag(Rdif*Rinv*u(:,m));

45 K2 = [xk ones(M,1)];

46 K3 = [hl*Rinv; hr*Rinv];

47 K4 = zeros(2);

48 K = [K1 K2; K3 K4];

49 F = [A^2*f(xk,t(m))-s+(w0*A^2-eye(M)/dt)*u(:,m);ul(t(m));ur(t(m))];

50 U = pinv(K)*F;

51 u(:,m+1) = U(1:M); % solution u at each time t(m)

52 m = m + 1; % update iteration m

53 t(m) = m*dt; % compute consecutive time t(m)

54 end

55 Rx = cos((0:M-1)*acos(2*x/L-1)); % calculate vector R(x)

56 um = Rx*Rinv*u(:,end); % approximate solution u(x,T)

57 ue = @(x,t) t^2*exp(x); % analytical solution u(x,T)

58 er = abs(ue(T,x)-um) % absolute error

59 plot(xk,u(:,end),'o') % plot approximate solution

60 hold on

61 plot(xk,ue(xk,T)) % plot analytical solution

107

APPENDIX C : Some example of MatLab code for solving two-dimensional nonlinear

Poisson-type equation over irregular domain. In this appendix, we show the MatLab code

of Example 5.1 based on the numerical Algorithm 3. The system of linear equations is

easily solved by using the backslash command in MatLab software.

1 function Example_51

2 %% -- Initial inputs --

3 M = 14; % grid numbers in x-direction

4 N = 14; % grid numbers in y-direction

5 H = M*N; % total numbers of grid points

6 a = -1; b = 1; % left and right boundaries

7 c = -1; d = 1; % bottom and top boundaries

8 x = 0; y = 0; % x and y that result is sought

9 u0 = zeros(H,1); % initial guess solution

10 TOL = 10^-5; % convergent tolerance

11 e = @(x,y) exp(x).*cos(y); % exact solution

12 f = @(x,y,u) exp(2*x).*cos(y).^2-u.^2; % forcing term

13 %% -- Construct matrices A and Rinv ---------------------------------

14 function [A,Rinv] = CIM(a,b,x,n)

15 R(:,1) = ones(n,1);

16 R(:,2) = (2*x-a-b)/(b-a);

17 for r = 2:n

18 R(:,r+1)=2*(2*x-a-b)/(b-a).*R(:,r)-R(:,r-1);

19 end

20 Rb(:,1) = x-a;

21 Rb(:,2) = (x-a).*(x-b)/(b-a);

22 for r = 2:n-1

23 Rb(:,r+1)=(b-a)/4*(R(:,r+2)/(r+1)-R(:,r)/(r-1)-2*(-1)^r/(r^2-1))

24 end

25 Rinv = 1/n*diag([1,repmat(2,1,n-1)])*R(:,1:n)';

26 A = Rb*Rinv;

27 end

108

28 %% -- Set parameters --

29 xk = flip(1/2*((b-a)*cos((2*(1:M)'-1)/(2*M)*pi)+a+b));

30 yh = flip(1/2*((d-c)*cos((2*(1:N)'-1)/(2*N)*pi)+c+d));

31 xg = kron(ones(N,1),xk); % all grid points in x-axis

32 yg = kron(yh,ones(M,1)); % all grid points in x-axis

33 [AM,RinvM] = CIM(a,b,xk,M);

34 [AN,RinvN] = CIM(c,d,yh,N);

35 Ax = kron(eye(N),AM); % Chebyshev integration matrix Ax

36 Ay = kron(AN,eye(M)); % Chebyshev integration matrix Ax

37 X = diag(xg);

38 Y = diag(yg);

39 Dgx = repmat(0:M-1,H,1); % degrees in matrix Phix

40 Dgy = repmat(0:N-1,H,1); % degrees in matrix Phiy

41 Ndx = repmat((2*xg-a-b)/(b-a),1,M); % nodal points in Phix

42 Ndy = repmat((2*yg-c-d)/(d-c),1,N); % nodal points in Phiy

43 Phix = cos(Dgx.*acos(Ndx)); % matrix Phix

44 Phiy = cos(Dgy.*acos(Ndy)); % matrix Phiy

45 for k = 1:M

46 for h = 1:N

47 i = (h-1)*M+k;

48 j = (k-1)*N+h;

49 P(i,j) = 1; % permutation matrix P

50 end

51 end

52 %% -- Boundary conditions ---

53 xl = [-yh(1:N/2)-1; yh(N/2+1:N)-1]; % nodes x on left boundary

54 xr = b*ones(N,1); % nodes x on right boundary

55 yb = [-xk(1:M/2)-1; c*ones(M/2,1)]; % nodes y on bottom boundary

56 yt = [xk(1:M/2)-1; d*ones(M/2,1)]; % nodes y on top boundary

57 gl = e(xl,yh); % left boundary condition

58 gr = e(xr,yh); % right boundary condition

59 gb = e(xk,yb); % bottom boundary condition

60 gt = e(xk,yt); % top boundary condition

109

61 Zl = []; Zr = []; Zb = []; Zt = [];

62 for i = 1:N

63 Zl = blkdiag(Zl,cos((0:M-1)*acos((2*xl(i)-a-b)/(b-a)))*RinvM);

64 Zr = blkdiag(Zr,cos((0:M-1)*acos((2*xr(i)-a-b)/(b-a)))*RinvM);

65 end

66 for i = 1:M

67 Zb = blkdiag(Zb,cos((0:N-1)*acos((2*yb(i)-c-d)/(d-c)))*RinvN);

68 Zt = blkdiag(Zt,cos((0:N-1)*acos((2*yt(i)-c-d)/(d-c)))*RinvN);

69 end

70 %% -- FIM-CPE ---

71 u(:,1) = u0; % initial guess solution

72 m = 1; % set initial iteration m

73 K1 = Ay^2+Ax^2;

74 K2 = [X*Phiy Phiy Y*Phix Phix];

75 K3 = [Zl; Zr; Zb*P'; Zt*P'];

76 K4 = zeros(2*(M+N));

77 K = [K1 K2; K3 K4];

78 F = [Ax^2*Ay^2*f(xg,yg,u(:,1)); gl; gr; gb; gt];

79 U = pinv(K)*F;

80 u(:,2) = U(1:H); % solution u at first iteration

81 while norm(u(:,m+1)-u(:,m))>TOL % verify the error norm

82 F = [Ax^2*Ay^2*f(xg,yg,u(:,m+1)); gl; gr; gb; gt];

83 U = pinv(K)*F;

84 m = m + 1; % update iteration m

85 u(:,m+1) = U(1:H); % solution u at mth iteration

86 end

87 zN = cos((0:N-1)*acos((2*y-c-d)/(d-c)))*RinvN;

88 zM = cos((0:M-1)*acos((2*x-a-b)/(b-a)))*RinvM;

89 ue = e(x,y) % analytical solution u(x,y)

90 ua = kron(zN,zM)*u(:,end); % approximate solution u(x,y)

91 Er = abs(ue-ua) % absolute error

110

BIOGRAPHY

Name Mr. Ampol Duangpan

Date of Birth August 6, 1992

Place of Birth Ranong, Thailand

Educations B.Sc. (Applied Mathematics) (First Class Honours), King

Mongkut Institute of Technology Ladkrabang, 2013

M.Sc. (Applied Mathematics and Computational Science),

Chulalongkorn University, 2016

Scholarships The 100th Anniversary Chulalongkorn University Fund for

Doctoral Scholarship

Publications

• R. Boonklurb, A. Duangpan and T. Treeyaprasert, Modified finite integration method

using Chebyshev polynomial for solving linear differential equations, Journal of Numerical

Analysis, Industrial and Applied Mathematics, vol. 12, no. 3–4, pp. 1–19, 2018.

• A. Duangpan, R. Boonklurb and T. Treeyaprasert, Finite integration method with shifted

Chebyshev polynomials for solving time-fractional Burgers’ equations, Mathematics, vol.

7, no. 12, pp. 1–24, 2019.

• R. Boonklurb, A. Duangpan and P. Gugaew, Numerical solution of direct and inverse

problems for time-dependent Volterra integro-differential equation using finite integration

method with shifted Chebyshev polynomials, Symmetry, vol. 12, no. 4, pp. 1–19, 2020.

• R. Boonklurb, A. Duangpan and A. Saengsiritongchai, Finite integration method via

Chebyshev polynomial expansion for solving 2-D linear time-dependent and linear space-

fractional differential equations, Thai Journal of Mathematics, pp. 103–131, 2020.

• A. Duangpan and R. Boonklurb, Finite integration method using Chebyshev expansion for

solving nonlinear Poisson equations on irregular domains, Journal of Numerical Analysis,

Industrial and Applied Mathematics, vol. 14, no. 1–2, pp. 7–24, 2020.

